Arnavkumar01's picture
changed the Voice from Leo to Amrut Deshmookh
587afb9
import os
import io
import json
import re
import tempfile
import logging
from contextlib import asynccontextmanager
from fastapi import FastAPI, Request, status, Depends, Header, HTTPException
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from dotenv import load_dotenv
from openai import OpenAI
from elevenlabs.client import ElevenLabs
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_postgres.vectorstores import PGVector
from sqlalchemy import create_engine
# --- GRADIO ---
import gradio as gr
# --------------------------------------------------------------------------- #
# CONFIGURATION
# --------------------------------------------------------------------------- #
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
logging.getLogger("tensorflow").setLevel(logging.ERROR)
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
load_dotenv()
NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
SHARED_SECRET = os.getenv("SHARED_SECRET")
COLLECTION_NAME = "real_estate_embeddings"
EMBEDDING_MODEL = "hkunlp/instructor-large"
# *** HARD-CODED VOICE ID (as requested) ***
ELEVENLABS_VOICE_ID = "LHJy3mhZWsvhUjy0zUM1" # <-- your voice
PLANNER_MODEL = "gpt-4o-mini"
ANSWERER_MODEL = "gpt-4o"
TABLE_DESCRIPTIONS = """
- "ongoing_projects_source": Details about projects currently under construction.
- "upcoming_projects_source": Information on future planned projects.
- "completed_projects_source": Facts about projects that are already finished.
- "historical_sales_source": Specific sales records, including price, date, and property ID.
- "past_customers_source": Information about previous customers.
- "feedback_source": Customer feedback and ratings for projects.
"""
# --------------------------------------------------------------------------- #
# CLIENTS
# --------------------------------------------------------------------------- #
embeddings = None
vector_store = None
client_openai = OpenAI(api_key=OPENAI_API_KEY)
client_elevenlabs = None
# ---- ElevenLabs init with detailed logging ---------------------------------
try:
key_preview = (
f"{ELEVENLABS_API_KEY[:5]}...{ELEVENLABS_API_KEY[-4:]}"
if ELEVENLABS_API_KEY and len(ELEVENLABS_API_KEY) > 9
else "None"
)
logging.info(f"Initializing ElevenLabs client with key: {key_preview}")
if not ELEVENLABS_API_KEY:
raise ValueError("ELEVENLABS_API_KEY is missing or empty.")
client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY)
logging.info(f"ElevenLabs client created – type: {type(client_elevenlabs)}")
# Verify we can list voices (optional, but proves the key works)
voices = client_elevenlabs.voices.get_all()
logging.info(f"Fetched {len(voices.voices)} voices from ElevenLabs.")
except Exception as e:
logging.error(f"ElevenLabs init failed: {e}", exc_info=True)
client_elevenlabs = None
# ---- Log SDK version -------------------------------------------------------
try:
import elevenlabs
logging.info(f"elevenlabs SDK version: {elevenlabs.__version__}")
except Exception:
logging.error("Could not import elevenlabs package.")
# --------------------------------------------------------------------------- #
# FASTAPI APP
# --------------------------------------------------------------------------- #
@asynccontextmanager
async def lifespan(app: FastAPI):
global embeddings, vector_store
logging.info(f"Loading embedding model: {EMBEDDING_MODEL}")
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
logging.info(f"Connecting to vector store: {COLLECTION_NAME}")
engine = create_engine(NEON_DATABASE_URL, pool_pre_ping=True)
vector_store = PGVector(
connection=engine,
collection_name=COLLECTION_NAME,
embeddings=embeddings,
)
logging.info("Vector store ready.")
yield
logging.info("Shutting down.")
app = FastAPI(lifespan=lifespan)
# --------------------------------------------------------------------------- #
# PROMPTS
# --------------------------------------------------------------------------- #
QUERY_FORMULATION_PROMPT = """
You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by.
**Available Tables:**
{table_descriptions}
**User's Query:** "{user_query}"
**Task:**
1. Rephrase into a clear, keyword-focused English search query.
2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table.
3. If no status keyword, set filter_table to null.
4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}}
""".strip()
ANSWER_SYSTEM_PROMPT = """
You are an expert AI assistant for a premier real estate developer.
## CORE KNOWLEDGE
- Cities: Pune, Mumbai, Bengaluru, Delhi, Chennai, Hyderabad, Goa, Gurgaon, Kolkata.
- Properties: Luxury apartments, villas, commercial.
- Budget: 45 lakhs to 5 crores.
## RULES
1. Match user language (Hinglish β†’ Hinglish, English β†’ English).
2. Use CONTEXT if available, else use core knowledge.
3. Only answer real estate questions.
""".strip()
# --------------------------------------------------------------------------- #
# AUDIO & LLM HELPERS
# --------------------------------------------------------------------------- #
def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str:
for attempt in range(3):
try:
audio_file = io.BytesIO(audio_bytes)
filename = os.path.basename(audio_path)
logging.info(f"Transcribing {filename} ({len(audio_bytes)} bytes)")
transcript = client_openai.audio.transcriptions.create(
model="whisper-1",
file=(filename, audio_file),
)
text = transcript.text.strip()
# Hinglish transliteration
if re.search(r"[\u0900-\u097F]", text):
resp = client_openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"}
],
temperature=0.0,
)
text = resp.choices[0].message.content.strip()
logging.info(f"Transcribed: {text}")
return text
except Exception as e:
logging.error(f"Transcription error (attempt {attempt + 1}): {e}", exc_info=True)
if attempt == 2:
return ""
return ""
def generate_elevenlabs_sync(text: str) -> bytes:
"""
Uses the hard-coded voice ID and the correct SDK method.
NOTE: `model` parameter is REMOVED in SDK v2.17.0+
"""
if client_elevenlabs is None:
logging.error("ElevenLabs client not initialized – skipping TTS.")
return b""
for attempt in range(3):
try:
logging.info("Calling ElevenLabs text_to_speech.convert...")
stream = client_elevenlabs.text_to_speech.convert(
voice_id=ELEVENLABS_VOICE_ID,
text=text,
output_format="mp3_44100_128",
# model="eleven_multilingual_v2" ← REMOVED
)
audio_bytes = b""
for chunk in stream:
if chunk:
audio_bytes += chunk
logging.info(f"TTS returned {len(audio_bytes)} bytes.")
return audio_bytes
except Exception as e:
logging.error(
f"ElevenLabs TTS error (attempt {attempt + 1}): {e}", exc_info=True
)
if attempt == 2:
return b""
return b""
async def formulate_search_plan(user_query: str) -> dict:
logging.info(f"Formulating search plan for: {user_query}")
for attempt in range(3):
try:
formatted = QUERY_FORMULATION_PROMPT.format(
table_descriptions=TABLE_DESCRIPTIONS, user_query=user_query
)
resp = await run_in_threadpool(
client_openai.chat.completions.create,
model=PLANNER_MODEL,
messages=[{"role": "user", "content": formatted}],
response_format={"type": "json_object"},
temperature=0.0,
)
raw = resp.choices[0].message.content
logging.info(f"Planner raw response: {raw}")
plan = json.loads(raw)
logging.info(f"Parsed plan: {plan}")
return plan
except Exception as e:
logging.error(f"Planner error (attempt {attempt + 1}): {e}", exc_info=True)
if attempt == 2:
return {"search_query": user_query, "filter_table": None}
return {"search_query": user_query, "filter_table": None}
async def get_agent_response(user_text: str) -> str:
for attempt in range(3):
try:
plan = await formulate_search_plan(user_text)
search_q = plan.get("search_query", user_text)
filter_tbl = plan.get("filter_table")
search_filter = {"source_table": filter_tbl} if filter_tbl else {}
docs = await run_in_threadpool(
vector_store.similarity_search,
search_q,
k=3,
filter=search_filter,
)
if not docs:
docs = await run_in_threadpool(vector_store.similarity_search, search_q, k=3)
context = "\n\n".join(d.page_content for d in docs)
resp = await run_in_threadpool(
client_openai.chat.completions.create,
model=ANSWERER_MODEL,
messages=[
{"role": "system", "content": ANSWER_SYSTEM_PROMPT},
{"role": "system", "content": f"CONTEXT:\n{context}"},
{"role": "user", "content": f"Question: {user_text}"},
],
)
return resp.choices[0].message.content.strip()
except Exception as e:
logging.error(f"RAG error (attempt {attempt + 1}): {e}", exc_info=True)
if attempt == 2:
return "Sorry, I couldn't respond. Please try again."
return "Sorry, I couldn't respond."
# --------------------------------------------------------------------------- #
# AUTH ENDPOINT
# --------------------------------------------------------------------------- #
class TextQuery(BaseModel):
query: str
async def verify_token(x_auth_token: str = Header(...)):
if not SHARED_SECRET or x_auth_token != SHARED_SECRET:
logging.warning("Auth failed for /test-text-query")
raise HTTPException(status_code=401, detail="Invalid token")
logging.info("Auth passed")
@app.post("/test-text-query", dependencies=[Depends(verify_token)])
async def test_text_query_endpoint(query: TextQuery):
logging.info(f"Text query: {query.query}")
response = await get_agent_response(query.query)
return {"response": response}
# --------------------------------------------------------------------------- #
# GRADIO PIPELINE
# --------------------------------------------------------------------------- #
async def process_audio(audio_path):
if not audio_path or not os.path.exists(audio_path):
return None, "No valid audio file received."
try:
# ---- 1. READ RAW BYTES ------------------------------------------------
with open(audio_path, "rb") as f:
audio_bytes = f.read()
if not audio_bytes:
return None, "Empty audio file."
# ---- 2. TRANSCRIBE ----------------------------------------------------
user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes)
if not user_text:
return None, "Couldn't understand audio. Try again."
logging.info(f"User: {user_text}")
# ---- 3. GET AI RESPONSE -----------------------------------------------
agent_response = await get_agent_response(user_text)
if not agent_response:
return None, "No response generated."
logging.info(f"AI: {agent_response[:100]}...")
logging.info(f"FULL AI Response sent to ElevenLabs: >>>{agent_response}<<<")
# ---- 4. TEXT-TO-SPEECH ------------------------------------------------
ai_audio_bytes = await run_in_threadpool(generate_elevenlabs_sync, agent_response)
if not ai_audio_bytes:
logging.error("TTS failed – returning text only.")
return (
None,
f"**You:** {user_text}\n\n**AI:** {agent_response}\n\n_(Audio generation failed)_",
)
# Save to a temporary file for Gradio
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
f.write(ai_audio_bytes)
out_path = f.name
logging.info(f"Saved TTS audio to {out_path}")
return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}"
except Exception as e:
logging.error(f"Audio processing error: {e}", exc_info=True)
return None, f"Error: {str(e)}"
# --------------------------------------------------------------------------- #
# GRADIO UI
# --------------------------------------------------------------------------- #
with gr.Blocks(title="Real Estate AI") as demo:
gr.Markdown("# Real Estate Voice Assistant")
gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.")
with gr.Row():
inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak")
out_audio = gr.Audio(label="AI Response", type="filepath")
out_text = gr.Textbox(label="Conversation", lines=8)
inp.change(process_audio, inputs=inp, outputs=[out_audio, out_text])
# No examples – they caused FileNotFound errors when clicking text.
# --------------------------------------------------------------------------- #
# MOUNT GRADIO
# --------------------------------------------------------------------------- #
app = gr.mount_gradio_app(app, demo, path="/")