Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| import streamlit as st | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import datetime | |
| # Set page configuration | |
| st.set_page_config( | |
| page_title="Qwen2.5-Coder Chat", | |
| page_icon="π¬", | |
| layout="wide" | |
| ) | |
| # Initialize session state | |
| if 'messages' not in st.session_state: | |
| st.session_state.messages = [] | |
| def load_model_and_tokenizer(): | |
| try: | |
| # Display loading message | |
| with st.spinner("π Loading model and tokenizer... This might take a few minutes..."): | |
| model_name = "Qwen/Qwen2.5-Coder-3B-Instruct" | |
| # Load tokenizer first | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_name, | |
| trust_remote_code=True | |
| ) | |
| # Determine device and display info | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| st.info(f"π» Using device: {device}") | |
| # Load model with appropriate settings | |
| if device == "cuda": | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype=torch.float16, # Use float16 for GPU | |
| device_map="auto", | |
| trust_remote_code=True | |
| ).eval() # Set to evaluation mode | |
| else: | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| device_map={"": device}, | |
| trust_remote_code=True, | |
| low_cpu_mem_usage=True | |
| ).eval() # Set to evaluation mode | |
| return tokenizer, model | |
| except Exception as e: | |
| st.error(f"β Error loading model: {str(e)}") | |
| raise e | |
| def generate_response(prompt, model, tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.9): | |
| """Generate response from the model with better error handling""" | |
| try: | |
| # Tokenize input | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| # Generate response with progress bar | |
| with torch.no_grad(), st.spinner("π€ Thinking..."): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True, | |
| pad_token_id=tokenizer.pad_token_id, | |
| eos_token_id=tokenizer.eos_token_id, | |
| repetition_penalty=1.1, | |
| no_repeat_ngram_size=3 | |
| ) | |
| # Decode and return response | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response[len(prompt):].strip() | |
| except torch.cuda.OutOfMemoryError: | |
| st.error("πΎ GPU memory exceeded. Try reducing the maximum length or clearing the conversation.") | |
| return None | |
| except Exception as e: | |
| st.error(f"β Error generating response: {str(e)}") | |
| return None | |
| # Main UI | |
| st.title("π¬ Qwen2.5-Coder Chat") | |
| # Sidebar settings | |
| with st.sidebar: | |
| st.header("βοΈ Settings") | |
| # Model settings | |
| max_length = st.slider( | |
| "Maximum Length π", | |
| min_value=64, | |
| max_value=2048, | |
| value=512, | |
| step=64 | |
| ) | |
| temperature = st.slider( | |
| "Temperature π‘οΈ", | |
| min_value=0.1, | |
| max_value=2.0, | |
| value=0.7, | |
| step=0.1 | |
| ) | |
| top_p = st.slider( | |
| "Top P π", | |
| min_value=0.1, | |
| max_value=1.0, | |
| value=0.9, | |
| step=0.1 | |
| ) | |
| # Clear conversation button | |
| if st.button("ποΈ Clear Conversation"): | |
| st.session_state.messages = [] | |
| st.rerun() | |
| # Load model | |
| try: | |
| tokenizer, model = load_model_and_tokenizer() | |
| except Exception as e: | |
| st.error("β Failed to load model. Please check the logs and refresh the page.") | |
| st.stop() | |
| # Display conversation history | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(f"{message['content']}\n\n_{message['timestamp']}_") | |
| # Chat input | |
| if prompt := st.chat_input("π Ask me anything about coding..."): | |
| # Add user message | |
| timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| st.session_state.messages.append({ | |
| "role": "user", | |
| "content": prompt, | |
| "timestamp": timestamp | |
| }) | |
| # Display user message | |
| with st.chat_message("user"): | |
| st.markdown(f"{prompt}\n\n_{timestamp}_") | |
| # Generate and display response | |
| with st.chat_message("assistant"): | |
| # Prepare conversation context (limit to last 3 messages to prevent context overflow) | |
| conversation = "\n".join( | |
| f"{'Human' if msg['role'] == 'user' else 'Assistant'}: {msg['content']}" | |
| for msg in st.session_state.messages[-3:] | |
| ) + "\nAssistant:" | |
| response = generate_response( | |
| conversation, | |
| model, | |
| tokenizer, | |
| max_new_tokens=max_length, | |
| temperature=temperature, | |
| top_p=top_p | |
| ) | |
| if response: | |
| timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| st.markdown(f"{response}\n\n_{timestamp}_") | |
| # Add response to chat history | |
| st.session_state.messages.append({ | |
| "role": "assistant", | |
| "content": response, | |
| "timestamp": timestamp | |
| }) | |
| else: | |
| st.error("β Failed to generate response. Please try again with different settings.") |