Spaces:
Sleeping
Sleeping
| import os | |
| import uuid | |
| import torch | |
| import numpy as np | |
| import gradio as gr | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| pipeline, | |
| AutoProcessor, | |
| MusicgenForConditionalGeneration, | |
| ) | |
| from scipy.io.wavfile import write | |
| from pydub import AudioSegment | |
| from dotenv import load_dotenv | |
| import tempfile | |
| import spaces | |
| from TTS.api import TTS | |
| # ----------------------------------------------------------- | |
| # Initialization & Environment Setup | |
| # ----------------------------------------------------------- | |
| load_dotenv() | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| # ----------------------------------------------------------- | |
| # Model Cache Management | |
| # ----------------------------------------------------------- | |
| LLAMA_PIPELINES = {} | |
| MUSICGEN_MODELS = {} | |
| TTS_MODELS = {} | |
| def get_llama_pipeline(model_id: str, token: str): | |
| """Load and cache the LLaMA text-generation pipeline.""" | |
| if model_id in LLAMA_PIPELINES: | |
| return LLAMA_PIPELINES[model_id] | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| use_auth_token=token, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| ) | |
| text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| LLAMA_PIPELINES[model_id] = text_pipeline | |
| return text_pipeline | |
| def get_musicgen_model(model_key: str = "facebook/musicgen-large"): | |
| """Load and cache the MusicGen model and processor.""" | |
| if model_key in MUSICGEN_MODELS: | |
| return MUSICGEN_MODELS[model_key] | |
| model = MusicgenForConditionalGeneration.from_pretrained(model_key) | |
| processor = AutoProcessor.from_pretrained(model_key) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| MUSICGEN_MODELS[model_key] = (model, processor) | |
| return model, processor | |
| def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC"): | |
| """Load and cache the TTS model.""" | |
| if model_name in TTS_MODELS: | |
| return TTS_MODELS[model_name] | |
| tts_model = TTS(model_name) | |
| TTS_MODELS[model_name] = tts_model | |
| return tts_model | |
| # ----------------------------------------------------------- | |
| # Core Functionality | |
| # ----------------------------------------------------------- | |
| def generate_script(user_prompt: str, model_id: str, token: str, duration: int): | |
| """ | |
| Generate a professional promo script including a voice-over script, | |
| sound design suggestions, and music recommendations. | |
| """ | |
| try: | |
| text_pipeline = get_llama_pipeline(model_id, token) | |
| # Updated prompt to instruct the model to output sections with explicit headers. | |
| system_prompt = ( | |
| f"You are a professional audio producer creating {duration}-second content. " | |
| "Please generate the following three sections exactly as shown:\n\n" | |
| "Voice-Over Script: [A clear and concise script for the voiceover.]\n" | |
| "Sound Design Suggestions: [Specific ideas, effects, and ambience recommendations.]\n" | |
| "Music Suggestions: [Recommendations for music style, genre, and tempo.]\n\n" | |
| "Make sure each section starts with its header exactly." | |
| ) | |
| full_prompt = f"{system_prompt}\nClient brief: {user_prompt}\nOutput:" | |
| with torch.inference_mode(): | |
| result = text_pipeline( | |
| full_prompt, | |
| max_new_tokens=400, | |
| do_sample=True, | |
| temperature=0.7, | |
| top_p=0.9 | |
| ) | |
| generated_text = result[0]["generated_text"].split("Output:")[-1].strip() | |
| # Parse the output into the three expected sections. | |
| sections = { | |
| "Voice-Over Script:": "", | |
| "Sound Design Suggestions:": "", | |
| "Music Suggestions:": "" | |
| } | |
| current_section = None | |
| for line in generated_text.split('\n'): | |
| for section in sections: | |
| if section in line: | |
| current_section = section | |
| # Remove header from the line. | |
| line = line.replace(section, '').strip() | |
| break | |
| if current_section: | |
| sections[current_section] += line + '\n' | |
| return ( | |
| sections["Voice-Over Script:"].strip() or "No script generated", | |
| sections["Sound Design Suggestions:"].strip() or "No sound design suggestions", | |
| sections["Music Suggestions:"].strip() or "No music suggestions" | |
| ) | |
| except Exception as e: | |
| return f"Error: {str(e)}", "", "" | |
| def generate_voice(script: str, tts_model_name: str): | |
| """ | |
| Generate full voice-over audio from the provided script using a TTS model. | |
| """ | |
| try: | |
| if not script.strip(): | |
| return None | |
| tts_model = get_tts_model(tts_model_name) | |
| # Create a unique temporary file name for the output. | |
| output_path = os.path.join(tempfile.gettempdir(), f"voice_{uuid.uuid4().hex}.wav") | |
| tts_model.tts_to_file(text=script, file_path=output_path) | |
| return output_path | |
| except Exception as e: | |
| print(f"Voice generation error: {e}") | |
| return None | |
| def generate_voice_preview(script: str, tts_model_name: str): | |
| """ | |
| Generate a short preview of the voice-over by taking the first 100 words. | |
| """ | |
| try: | |
| if not script.strip(): | |
| return None | |
| words = script.split() | |
| preview_text = ' '.join(words[:100]) if len(words) > 100 else script | |
| return generate_voice(preview_text, tts_model_name) | |
| except Exception as e: | |
| print(f"Voice preview error: {e}") | |
| return None | |
| def generate_music(prompt: str, audio_length: int): | |
| """ | |
| Generate music audio from a text prompt using the MusicGen model. | |
| """ | |
| try: | |
| model, processor = get_musicgen_model() | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| inputs = processor(text=[prompt], padding=True, return_tensors="pt").to(device) | |
| with torch.inference_mode(): | |
| outputs = model.generate(**inputs, max_new_tokens=audio_length) | |
| # Assuming outputs[0, 0] holds the generated audio waveform. | |
| audio_data = outputs[0, 0].cpu().numpy() | |
| # Prevent division by zero during normalization. | |
| max_val = np.max(np.abs(audio_data)) | |
| if max_val == 0: | |
| normalized_audio = audio_data.astype("int16") | |
| else: | |
| normalized_audio = (audio_data / max_val * 32767).astype("int16") | |
| output_path = os.path.join(tempfile.gettempdir(), f"music_{uuid.uuid4().hex}.wav") | |
| write(output_path, 44100, normalized_audio) | |
| return output_path | |
| except Exception as e: | |
| print(f"Music generation error: {e}") | |
| return None | |
| def blend_audio(voice_path: str, music_path: str, ducking: bool, duck_level: int): | |
| """ | |
| Blend the generated voice and music audio files. | |
| If ducking is enabled, lower the music volume during the voice segments. | |
| """ | |
| try: | |
| voice = AudioSegment.from_wav(voice_path) | |
| music = AudioSegment.from_wav(music_path) | |
| # Loop the music track if it's shorter than the voice track. | |
| if len(music) < len(voice): | |
| loops_needed = (len(voice) // len(music)) + 1 | |
| music = music * loops_needed | |
| music = music[:len(voice)] | |
| if ducking: | |
| ducked_music = music - duck_level | |
| final_audio = ducked_music.overlay(voice) | |
| else: | |
| final_audio = music.overlay(voice) | |
| output_path = os.path.join(tempfile.gettempdir(), f"final_mix_{uuid.uuid4().hex}.wav") | |
| final_audio.export(output_path, format="wav") | |
| return output_path | |
| except Exception as e: | |
| print(f"Mixing error: {e}") | |
| return None | |
| # ----------------------------------------------------------- | |
| # Enhanced UI Components | |
| # ----------------------------------------------------------- | |
| custom_css = """ | |
| #main-container { | |
| max-width: 1200px; | |
| margin: 0 auto; | |
| padding: 20px; | |
| background: #f0f9fb; | |
| border-radius: 15px; | |
| box-shadow: 0 4px 6px rgba(0,0,0,0.05); | |
| } | |
| .header { | |
| text-align: center; | |
| padding: 2em; | |
| background: linear-gradient(135deg, #2a9d8f 0%, #457b9d 100%); | |
| color: white; | |
| border-radius: 15px; | |
| margin-bottom: 2em; | |
| border: 1px solid #264653; | |
| } | |
| .tab-nav { | |
| background: none !important; | |
| border: none !important; | |
| } | |
| .tab-button { | |
| padding: 1em 2em !important; | |
| border-radius: 8px !important; | |
| margin: 0 5px !important; | |
| transition: all 0.3s ease !important; | |
| background: #e9f5f4 !important; | |
| border: 1px solid #a8dadc !important; | |
| color: #1d3557 !important; | |
| } | |
| .tab-button:hover { | |
| transform: translateY(-2px); | |
| box-shadow: 0 3px 6px rgba(42,157,143,0.2); | |
| background: #caf0f8 !important; | |
| } | |
| .dark-btn { | |
| background: linear-gradient(135deg, #457b9d 0%, #2a9d8f 100%) !important; | |
| color: white !important; | |
| border: none !important; | |
| padding: 12px 24px !important; | |
| border-radius: 8px !important; | |
| transition: transform 0.2s ease !important; | |
| } | |
| .dark-btn:hover { | |
| transform: scale(1.02); | |
| box-shadow: 0 3px 8px rgba(42,157,143,0.3); | |
| } | |
| .output-card { | |
| background: #f8fbfe !important; | |
| border-radius: 10px !important; | |
| padding: 20px !important; | |
| box-shadow: 0 2px 4px rgba(69,123,157,0.1) !important; | |
| border: 1px solid #e2e8f0; | |
| } | |
| .progress-indicator { | |
| color: #457b9d; | |
| font-style: italic; | |
| margin-top: 10px; | |
| } | |
| /* Additional Color Elements */ | |
| h1, h2, h3 { | |
| color: #1d3557 !important; | |
| } | |
| audio { | |
| border: 1px solid #a8dadc !important; | |
| border-radius: 8px !important; | |
| } | |
| .slider-handle { | |
| background: #2a9d8f !important; | |
| } | |
| """ | |
| with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as demo: | |
| with gr.Column(elem_id="main-container"): | |
| # Header Section | |
| with gr.Column(elem_classes="header"): | |
| gr.Markdown(""" | |
| # ποΈ AI Promo Studio | |
| **Professional Audio Production Suite Powered by AI** | |
| """) | |
| # Main Workflow Tabs | |
| with gr.Tabs(elem_classes="tab-nav"): | |
| # Script Generation Tab | |
| with gr.Tab("π Script Design", elem_classes="tab-button"): | |
| with gr.Row(equal_height=False): | |
| with gr.Column(scale=2): | |
| gr.Markdown("### π― Project Brief") | |
| user_prompt = gr.Textbox( | |
| label="Describe your promo concept", | |
| placeholder="e.g., 'An intense 30-second movie trailer intro with epic orchestral music and dramatic sound effects...'", | |
| lines=4 | |
| ) | |
| with gr.Row(): | |
| duration = gr.Slider( | |
| label="Duration (seconds)", | |
| minimum=15, | |
| maximum=120, | |
| step=15, | |
| value=30, | |
| interactive=True | |
| ) | |
| llama_model_id = gr.Dropdown( | |
| label="AI Model", | |
| choices=["meta-llama/Meta-Llama-3-8B-Instruct"], | |
| value="meta-llama/Meta-Llama-3-8B-Instruct", | |
| interactive=True | |
| ) | |
| generate_btn = gr.Button("Generate Script π", elem_classes="dark-btn") | |
| with gr.Column(scale=1, elem_classes="output-card"): | |
| gr.Markdown("### π Generated Content") | |
| script_output = gr.Textbox(label="Voice Script", lines=6) | |
| sound_design_output = gr.Textbox(label="Sound Design", lines=3) | |
| music_suggestion_output = gr.Textbox(label="Music Style", lines=3) | |
| # Voice Production Tab | |
| with gr.Tab("ποΈ Voice Production", elem_classes="tab-button"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π Voice Settings") | |
| tts_model = gr.Dropdown( | |
| label="Voice Model", | |
| choices=[ | |
| "tts_models/en/ljspeech/tacotron2-DDC", | |
| "tts_models/en/ljspeech/vits", | |
| "tts_models/en/sam/tacotron-DDC" | |
| ], | |
| value="tts_models/en/ljspeech/tacotron2-DDC", | |
| interactive=True | |
| ) | |
| with gr.Row(): | |
| voice_preview_btn = gr.Button("Preview Sample", elem_classes="dark-btn") | |
| voice_generate_btn = gr.Button("Generate Full Voiceover", elem_classes="dark-btn") | |
| with gr.Column(scale=1, elem_classes="output-card"): | |
| gr.Markdown("### π§ Voice Preview") | |
| voice_audio = gr.Audio( | |
| label="Generated Voice", | |
| interactive=False, | |
| waveform_options={"show_controls": True} | |
| ) | |
| # Music Production Tab | |
| with gr.Tab("π΅ Music Design", elem_classes="tab-button"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### πΉ Music Parameters") | |
| audio_length = gr.Slider( | |
| label="Generation Length", | |
| minimum=256, | |
| maximum=1024, | |
| step=64, | |
| value=512, | |
| info="Higher values = longer generation time" | |
| ) | |
| music_generate_btn = gr.Button("Generate Music Track", elem_classes="dark-btn") | |
| with gr.Column(scale=1, elem_classes="output-card"): | |
| gr.Markdown("### πΆ Music Preview") | |
| music_output = gr.Audio( | |
| label="Generated Music", | |
| interactive=False, | |
| waveform_options={"show_controls": True} | |
| ) | |
| # Final Mix Tab | |
| with gr.Tab("π Final Mix", elem_classes="tab-button"): | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### ποΈ Mixing Console") | |
| ducking_enabled = gr.Checkbox( | |
| label="Enable Voice Ducking", | |
| value=True, | |
| info="Automatically lower music during voice segments" | |
| ) | |
| duck_level = gr.Slider( | |
| label="Ducking Intensity (dB)", | |
| minimum=3, | |
| maximum=20, | |
| step=1, | |
| value=10 | |
| ) | |
| mix_btn = gr.Button("Generate Final Mix", elem_classes="dark-btn") | |
| with gr.Column(scale=1, elem_classes="output-card"): | |
| gr.Markdown("### π§ Final Production") | |
| final_mix = gr.Audio( | |
| label="Mixed Output", | |
| interactive=False, | |
| waveform_options={"show_controls": True} | |
| ) | |
| # Footer Section | |
| with gr.Column(elem_classes="output-card"): | |
| gr.Markdown(""" | |
| <div style="text-align: center; padding: 1.5em 0;"> | |
| <a href="https://bilsimaging.com" target="_blank"> | |
| <img src="https://bilsimaging.com/logo.png" alt="Bils Imaging" style="height: 35px; margin-right: 15px;"> | |
| </a> | |
| <a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold"> | |
| <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" /> | |
| </a> | |
| </div> | |
| <p style="text-align: center; color: #666; font-size: 0.9em;"> | |
| Professional Audio Production Suite v2.1 Β© 2024 | Bils Imaging | |
| </p> | |
| """) | |
| # ----------------------------------------------------------- | |
| # Event Handling | |
| # ----------------------------------------------------------- | |
| # Hidden textbox for HF_TOKEN (its value is set via the environment variable). | |
| hf_token_hidden = gr.Textbox(value=HF_TOKEN, visible=False) | |
| generate_btn.click( | |
| generate_script, | |
| inputs=[user_prompt, llama_model_id, hf_token_hidden, duration], | |
| outputs=[script_output, sound_design_output, music_suggestion_output] | |
| ) | |
| # Voice preview: generates a trimmed version of the script. | |
| voice_preview_btn.click( | |
| generate_voice_preview, | |
| inputs=[script_output, tts_model], | |
| outputs=voice_audio | |
| ) | |
| # Full voice generation using the complete script. | |
| voice_generate_btn.click( | |
| generate_voice, | |
| inputs=[script_output, tts_model], | |
| outputs=voice_audio | |
| ) | |
| music_generate_btn.click( | |
| generate_music, | |
| inputs=[music_suggestion_output, audio_length], | |
| outputs=music_output | |
| ) | |
| mix_btn.click( | |
| blend_audio, | |
| inputs=[voice_audio, music_output, ducking_enabled, duck_level], | |
| outputs=final_mix | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(debug=True) | |