Spaces:
Sleeping
Sleeping
Commit
·
aa55081
1
Parent(s):
830acbf
Upd imports
Browse files
memory/memory.py
CHANGED
|
@@ -10,8 +10,8 @@ import logging
|
|
| 10 |
from models.summarizer import summarizer
|
| 11 |
|
| 12 |
_LLM_SMALL = "gemini-2.5-flash-lite-preview-06-17"
|
| 13 |
-
# Load embedding model
|
| 14 |
-
EMBED = SentenceTransformer("
|
| 15 |
logger = logging.getLogger("rag-agent")
|
| 16 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(name)s — %(levelname)s — %(message)s", force=True) # Change INFO to DEBUG for full-ctx JSON loader
|
| 17 |
|
|
|
|
| 10 |
from models.summarizer import summarizer
|
| 11 |
|
| 12 |
_LLM_SMALL = "gemini-2.5-flash-lite-preview-06-17"
|
| 13 |
+
# Load embedding model - use standard model that downloads automatically
|
| 14 |
+
EMBED = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")
|
| 15 |
logger = logging.getLogger("rag-agent")
|
| 16 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s — %(name)s — %(levelname)s — %(message)s", force=True) # Change INFO to DEBUG for full-ctx JSON loader
|
| 17 |
|
models/__pycache__/__init__.cpython-311.pyc
DELETED
|
Binary file (351 Bytes)
|
|
|
models/__pycache__/llama.cpython-311.pyc
CHANGED
|
Binary files a/models/__pycache__/llama.cpython-311.pyc and b/models/__pycache__/llama.cpython-311.pyc differ
|
|
|
models/__pycache__/summarizer.cpython-311.pyc
CHANGED
|
Binary files a/models/__pycache__/summarizer.cpython-311.pyc and b/models/__pycache__/summarizer.cpython-311.pyc differ
|
|
|
models/llama.py
CHANGED
|
@@ -11,7 +11,8 @@ class NVIDIALLamaClient:
|
|
| 11 |
def __init__(self):
|
| 12 |
self.api_key = os.getenv("NVIDIA_URI")
|
| 13 |
if not self.api_key:
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
# Correct NVIDIA Integrate API base
|
| 17 |
self.base_url = "https://integrate.api.nvidia.com/v1"
|
|
@@ -19,11 +20,15 @@ class NVIDIALLamaClient:
|
|
| 19 |
|
| 20 |
def generate_keywords(self, user_query: str) -> List[str]:
|
| 21 |
"""Use Llama to generate search keywords from user query"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
try:
|
| 23 |
-
prompt = f"""Given this
|
| 24 |
|
| 25 |
-
Generate 3-5 specific search keywords that would help find relevant
|
| 26 |
-
Focus on
|
| 27 |
Return only the keywords separated by commas, no explanations.
|
| 28 |
|
| 29 |
Keywords:"""
|
|
@@ -37,7 +42,30 @@ Keywords:"""
|
|
| 37 |
|
| 38 |
except Exception as e:
|
| 39 |
logger.error(f"Failed to generate keywords: {e}")
|
| 40 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
def summarize_documents(self, documents: List[Dict], user_query: str) -> Tuple[str, Dict[int, str]]:
|
| 43 |
"""Use Llama to summarize documents and return summary with URL mapping"""
|
|
|
|
| 11 |
def __init__(self):
|
| 12 |
self.api_key = os.getenv("NVIDIA_URI")
|
| 13 |
if not self.api_key:
|
| 14 |
+
logger.warning("NVIDIA_URI not set - summarization will use fallback methods")
|
| 15 |
+
self.api_key = None
|
| 16 |
|
| 17 |
# Correct NVIDIA Integrate API base
|
| 18 |
self.base_url = "https://integrate.api.nvidia.com/v1"
|
|
|
|
| 20 |
|
| 21 |
def generate_keywords(self, user_query: str) -> List[str]:
|
| 22 |
"""Use Llama to generate search keywords from user query"""
|
| 23 |
+
if not self.api_key:
|
| 24 |
+
# Fallback: extract keywords from query
|
| 25 |
+
return self._extract_keywords_fallback(user_query)
|
| 26 |
+
|
| 27 |
try:
|
| 28 |
+
prompt = f"""Given this cooking question: "{user_query}"
|
| 29 |
|
| 30 |
+
Generate 3-5 specific search keywords that would help find relevant cooking information online.
|
| 31 |
+
Focus on cooking terms, ingredients, techniques, recipes, or culinary methods mentioned.
|
| 32 |
Return only the keywords separated by commas, no explanations.
|
| 33 |
|
| 34 |
Keywords:"""
|
|
|
|
| 42 |
|
| 43 |
except Exception as e:
|
| 44 |
logger.error(f"Failed to generate keywords: {e}")
|
| 45 |
+
return self._extract_keywords_fallback(user_query)
|
| 46 |
+
|
| 47 |
+
def _extract_keywords_fallback(self, user_query: str) -> List[str]:
|
| 48 |
+
"""Fallback keyword extraction when NVIDIA API is not available"""
|
| 49 |
+
# Simple keyword extraction from cooking terms
|
| 50 |
+
cooking_keywords = [
|
| 51 |
+
'recipe', 'cooking', 'baking', 'roasting', 'grilling', 'frying', 'boiling', 'steaming',
|
| 52 |
+
'ingredients', 'seasoning', 'spices', 'herbs', 'sauce', 'marinade', 'dressing',
|
| 53 |
+
'technique', 'method', 'temperature', 'timing', 'preparation', 'cooking time',
|
| 54 |
+
'oven', 'stovetop', 'grill', 'pan', 'pot', 'skillet', 'knife', 'cutting',
|
| 55 |
+
'vegetarian', 'vegan', 'gluten-free', 'dairy-free', 'keto', 'paleo', 'diet',
|
| 56 |
+
'appetizer', 'main course', 'dessert', 'breakfast', 'lunch', 'dinner',
|
| 57 |
+
'cuisine', 'italian', 'chinese', 'mexican', 'french', 'indian', 'thai'
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
query_lower = user_query.lower()
|
| 61 |
+
found_keywords = [kw for kw in cooking_keywords if kw in query_lower]
|
| 62 |
+
|
| 63 |
+
# If no cooking keywords found, use first few words
|
| 64 |
+
if not found_keywords:
|
| 65 |
+
words = user_query.split()[:5]
|
| 66 |
+
found_keywords = [w for w in words if len(w) > 2]
|
| 67 |
+
|
| 68 |
+
return found_keywords[:5] # Limit to 5 keywords
|
| 69 |
|
| 70 |
def summarize_documents(self, documents: List[Dict], user_query: str) -> Tuple[str, Dict[int, str]]:
|
| 71 |
"""Use Llama to summarize documents and return summary with URL mapping"""
|
models/summarizer.py
CHANGED
|
@@ -7,7 +7,11 @@ logger = logging.getLogger(__name__)
|
|
| 7 |
|
| 8 |
class TextSummarizer:
|
| 9 |
def __init__(self):
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def clean_text(self, text: str) -> str:
|
| 13 |
"""Clean and normalize text for summarization"""
|
|
@@ -61,6 +65,9 @@ class TextSummarizer:
|
|
| 61 |
|
| 62 |
def summarize_text(self, text: str, max_length: int = 200) -> str:
|
| 63 |
"""Summarize text using NVIDIA Llama model"""
|
|
|
|
|
|
|
|
|
|
| 64 |
try:
|
| 65 |
if not text or len(text.strip()) < 50:
|
| 66 |
return text
|
|
@@ -94,13 +101,34 @@ Summary:"""
|
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
logger.error(f"Summarization failed: {e}")
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
def summarize_for_query(self, text: str, query: str, max_length: int = 220) -> str:
|
| 101 |
"""Summarize text focusing strictly on information relevant to the query.
|
| 102 |
Returns an empty string if nothing relevant is found.
|
| 103 |
"""
|
|
|
|
|
|
|
|
|
|
| 104 |
try:
|
| 105 |
if not text:
|
| 106 |
return ""
|
|
@@ -125,7 +153,41 @@ Summary:"""
|
|
| 125 |
return summary
|
| 126 |
except Exception as e:
|
| 127 |
logger.warning(f"Query-focused summarization failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
def summarize_documents(self, documents: List[Dict], user_query: str) -> Tuple[str, Dict[int, str]]:
|
| 131 |
"""Summarize multiple documents with URL mapping"""
|
|
|
|
| 7 |
|
| 8 |
class TextSummarizer:
|
| 9 |
def __init__(self):
|
| 10 |
+
try:
|
| 11 |
+
self.llama_client = NVIDIALLamaClient()
|
| 12 |
+
except Exception as e:
|
| 13 |
+
logger.warning(f"Failed to initialize NVIDIA Llama client: {e}")
|
| 14 |
+
self.llama_client = None
|
| 15 |
|
| 16 |
def clean_text(self, text: str) -> str:
|
| 17 |
"""Clean and normalize text for summarization"""
|
|
|
|
| 65 |
|
| 66 |
def summarize_text(self, text: str, max_length: int = 200) -> str:
|
| 67 |
"""Summarize text using NVIDIA Llama model"""
|
| 68 |
+
if not self.llama_client:
|
| 69 |
+
return self._summarize_fallback(text, max_length)
|
| 70 |
+
|
| 71 |
try:
|
| 72 |
if not text or len(text.strip()) < 50:
|
| 73 |
return text
|
|
|
|
| 101 |
|
| 102 |
except Exception as e:
|
| 103 |
logger.error(f"Summarization failed: {e}")
|
| 104 |
+
return self._summarize_fallback(text, max_length)
|
| 105 |
+
|
| 106 |
+
def _summarize_fallback(self, text: str, max_length: int = 200) -> str:
|
| 107 |
+
"""Fallback summarization when NVIDIA API is not available"""
|
| 108 |
+
if not text:
|
| 109 |
+
return ""
|
| 110 |
+
|
| 111 |
+
cleaned_text = self.clean_text(text)
|
| 112 |
+
if len(cleaned_text) <= max_length:
|
| 113 |
+
return cleaned_text
|
| 114 |
+
|
| 115 |
+
# Simple truncation with sentence boundary detection
|
| 116 |
+
sentences = cleaned_text.split('. ')
|
| 117 |
+
result = ""
|
| 118 |
+
for sentence in sentences:
|
| 119 |
+
if len(result + sentence) > max_length:
|
| 120 |
+
break
|
| 121 |
+
result += sentence + ". "
|
| 122 |
+
|
| 123 |
+
return result.strip() or cleaned_text[:max_length] + "..."
|
| 124 |
|
| 125 |
def summarize_for_query(self, text: str, query: str, max_length: int = 220) -> str:
|
| 126 |
"""Summarize text focusing strictly on information relevant to the query.
|
| 127 |
Returns an empty string if nothing relevant is found.
|
| 128 |
"""
|
| 129 |
+
if not self.llama_client:
|
| 130 |
+
return self._summarize_for_query_fallback(text, query, max_length)
|
| 131 |
+
|
| 132 |
try:
|
| 133 |
if not text:
|
| 134 |
return ""
|
|
|
|
| 153 |
return summary
|
| 154 |
except Exception as e:
|
| 155 |
logger.warning(f"Query-focused summarization failed: {e}")
|
| 156 |
+
return self._summarize_for_query_fallback(text, query, max_length)
|
| 157 |
+
|
| 158 |
+
def _summarize_for_query_fallback(self, text: str, query: str, max_length: int = 220) -> str:
|
| 159 |
+
"""Fallback query-focused summarization when NVIDIA API is not available"""
|
| 160 |
+
if not text:
|
| 161 |
+
return ""
|
| 162 |
+
|
| 163 |
+
cleaned_text = self.clean_text(text)
|
| 164 |
+
if not cleaned_text:
|
| 165 |
+
return ""
|
| 166 |
+
|
| 167 |
+
# Simple keyword matching for relevance
|
| 168 |
+
query_words = set(query.lower().split())
|
| 169 |
+
text_words = set(cleaned_text.lower().split())
|
| 170 |
+
|
| 171 |
+
# Check if there's any overlap
|
| 172 |
+
overlap = query_words.intersection(text_words)
|
| 173 |
+
if not overlap:
|
| 174 |
return ""
|
| 175 |
+
|
| 176 |
+
# Return first few sentences that contain query words
|
| 177 |
+
sentences = cleaned_text.split('. ')
|
| 178 |
+
relevant_sentences = []
|
| 179 |
+
for sentence in sentences:
|
| 180 |
+
sentence_words = set(sentence.lower().split())
|
| 181 |
+
if query_words.intersection(sentence_words):
|
| 182 |
+
relevant_sentences.append(sentence)
|
| 183 |
+
if len('. '.join(relevant_sentences)) > max_length:
|
| 184 |
+
break
|
| 185 |
+
|
| 186 |
+
result = '. '.join(relevant_sentences)
|
| 187 |
+
if len(result) > max_length:
|
| 188 |
+
result = result[:max_length-3] + "..."
|
| 189 |
+
|
| 190 |
+
return result
|
| 191 |
|
| 192 |
def summarize_documents(self, documents: List[Dict], user_query: str) -> Tuple[str, Dict[int, str]]:
|
| 193 |
"""Summarize multiple documents with URL mapping"""
|