|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import glob |
|
|
import os |
|
|
from pathlib import Path |
|
|
|
|
|
import cv2 |
|
|
import face_alignment |
|
|
import numpy as np |
|
|
import torch |
|
|
from accelerate import Accelerator |
|
|
from skimage.io import imread |
|
|
from torchvision.utils import save_image |
|
|
from tqdm import tqdm |
|
|
from transformers import AutoTokenizer |
|
|
from utils.args_loader import parse_args |
|
|
from utils.dataset import make_dataset |
|
|
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available(): |
|
|
device = "cuda:0" |
|
|
else: |
|
|
|
|
|
device = "cpu" |
|
|
|
|
|
detect_model = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, device=device, flip_input=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype=np.int32) - 1 |
|
|
|
|
|
|
|
|
def count_txt_files(directory): |
|
|
pattern = os.path.join(directory, "*.txt") |
|
|
txt_files = glob.glob(pattern) |
|
|
return len(txt_files) |
|
|
|
|
|
|
|
|
def plot_kpts(image, kpts, color="g"): |
|
|
"""Draw 68 key points |
|
|
Args: |
|
|
image: the input image |
|
|
kpt: (68, 3). |
|
|
""" |
|
|
if color == "r": |
|
|
c = (255, 0, 0) |
|
|
elif color == "g": |
|
|
c = (0, 255, 0) |
|
|
elif color == "b": |
|
|
c = (255, 0, 0) |
|
|
image = image.copy() |
|
|
kpts = kpts.copy() |
|
|
radius = max(int(min(image.shape[0], image.shape[1]) / 200), 1) |
|
|
for i in range(kpts.shape[0]): |
|
|
st = kpts[i, :2] |
|
|
if kpts.shape[1] == 4: |
|
|
if kpts[i, 3] > 0.5: |
|
|
c = (0, 255, 0) |
|
|
else: |
|
|
c = (0, 0, 255) |
|
|
image = cv2.circle(image, (int(st[0]), int(st[1])), radius, c, radius * 2) |
|
|
if i in end_list: |
|
|
continue |
|
|
ed = kpts[i + 1, :2] |
|
|
image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), radius) |
|
|
return image |
|
|
|
|
|
|
|
|
def generate_landmark2d(dataset, input_dir, pred_lmk_dir, gt_lmk_dir, vis=False): |
|
|
print("Generate 2d landmarks ...") |
|
|
os.makedirs(pred_lmk_dir, exist_ok=True) |
|
|
|
|
|
imagepath_list = sorted(glob.glob(f"{input_dir}/pred*.png")) |
|
|
|
|
|
for imagepath in tqdm(imagepath_list): |
|
|
name = Path(imagepath).stem |
|
|
idx = int(name.split("_")[-1]) |
|
|
pred_txt_path = os.path.join(pred_lmk_dir, f"{idx}.txt") |
|
|
gt_lmk_path = os.path.join(gt_lmk_dir, f"{idx}_gt_lmk.jpg") |
|
|
gt_txt_path = os.path.join(gt_lmk_dir, f"{idx}.txt") |
|
|
gt_img_path = os.path.join(gt_lmk_dir, f"{idx}_gt_img.jpg") |
|
|
|
|
|
if (not os.path.exists(pred_txt_path)) or (not os.path.exists(gt_txt_path)): |
|
|
image = imread(imagepath) |
|
|
out = detect_model.get_landmarks(image) |
|
|
if out is None: |
|
|
continue |
|
|
|
|
|
pred_kpt = out[0].squeeze() |
|
|
np.savetxt(pred_txt_path, pred_kpt) |
|
|
|
|
|
|
|
|
gt_lmk_img = dataset[idx]["conditioning_pixel_values"] |
|
|
save_image(gt_lmk_img, gt_lmk_path) |
|
|
|
|
|
gt_img = (dataset[idx]["pixel_values"]) * 0.5 + 0.5 |
|
|
save_image(gt_img, gt_img_path) |
|
|
|
|
|
gt_img = (gt_img.permute(1, 2, 0) * 255).type(torch.uint8).cpu().numpy() |
|
|
out = detect_model.get_landmarks(gt_img) |
|
|
if out is None: |
|
|
continue |
|
|
|
|
|
gt_kpt = out[0].squeeze() |
|
|
np.savetxt(gt_txt_path, gt_kpt) |
|
|
|
|
|
|
|
|
if vis: |
|
|
gt_lmk_image = cv2.imread(gt_lmk_path) |
|
|
|
|
|
|
|
|
vis_path = os.path.join(pred_lmk_dir, f"{idx}_overlay.jpg") |
|
|
image = cv2.imread(imagepath) |
|
|
image_point = plot_kpts(image, pred_kpt) |
|
|
cv2.imwrite(vis_path, np.concatenate([image_point, gt_lmk_image], axis=1)) |
|
|
|
|
|
|
|
|
vis_path = os.path.join(gt_lmk_dir, f"{idx}_overlay.jpg") |
|
|
image = cv2.imread(gt_img_path) |
|
|
image_point = plot_kpts(image, gt_kpt) |
|
|
cv2.imwrite(vis_path, np.concatenate([image_point, gt_lmk_image], axis=1)) |
|
|
|
|
|
|
|
|
def landmark_comparison(val_dataset, lmk_dir, gt_lmk_dir): |
|
|
print("Calculating reprojection error") |
|
|
lmk_err = [] |
|
|
|
|
|
pbar = tqdm(range(len(val_dataset))) |
|
|
for i in pbar: |
|
|
|
|
|
|
|
|
lmk1_path = os.path.join(gt_lmk_dir, f"{i}.txt") |
|
|
lmk1 = np.loadtxt(lmk1_path) |
|
|
lmk2_path = os.path.join(lmk_dir, f"{i}.txt") |
|
|
|
|
|
if not os.path.exists(lmk2_path): |
|
|
print(f"{lmk2_path} not exist") |
|
|
continue |
|
|
|
|
|
lmk2 = np.loadtxt(lmk2_path) |
|
|
lmk_err.append(np.mean(np.linalg.norm(lmk1 - lmk2, axis=1))) |
|
|
pbar.set_description(f"lmk_err: {np.mean(lmk_err):.5f}") |
|
|
|
|
|
print("Reprojection error:", np.mean(lmk_err)) |
|
|
np.save(os.path.join(lmk_dir, "lmk_err.npy"), lmk_err) |
|
|
|
|
|
|
|
|
def main(args): |
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
|
|
accelerator = Accelerator( |
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
|
mixed_precision=args.mixed_precision, |
|
|
log_with=args.report_to, |
|
|
project_dir=logging_dir, |
|
|
) |
|
|
|
|
|
|
|
|
if args.tokenizer_name: |
|
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) |
|
|
elif args.pretrained_model_name_or_path: |
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="tokenizer", |
|
|
revision=args.revision, |
|
|
use_fast=False, |
|
|
) |
|
|
|
|
|
val_dataset = make_dataset(args, tokenizer, accelerator, "test") |
|
|
|
|
|
gt_lmk_dir = os.path.join(args.output_dir, "gt_lmk") |
|
|
if not os.path.exists(gt_lmk_dir): |
|
|
os.makedirs(gt_lmk_dir, exist_ok=True) |
|
|
|
|
|
pred_lmk_dir = os.path.join(args.output_dir, "pred_lmk") |
|
|
if not os.path.exists(pred_lmk_dir): |
|
|
os.makedirs(pred_lmk_dir, exist_ok=True) |
|
|
|
|
|
input_dir = os.path.join(args.output_dir, "results") |
|
|
|
|
|
generate_landmark2d(val_dataset, input_dir, pred_lmk_dir, gt_lmk_dir, args.vis_overlays) |
|
|
|
|
|
if count_txt_files(pred_lmk_dir) == len(val_dataset) and count_txt_files(gt_lmk_dir) == len(val_dataset): |
|
|
landmark_comparison(val_dataset, pred_lmk_dir, gt_lmk_dir) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
args = parse_args() |
|
|
main(args) |
|
|
|