|
|
|
|
|
import os |
|
|
|
|
|
import torch |
|
|
from datasets import load_dataset |
|
|
from transformers import ( |
|
|
AutoModelForCausalLM, |
|
|
AutoTokenizer, |
|
|
BitsAndBytesConfig, |
|
|
DataCollatorForLanguageModeling, |
|
|
Trainer, |
|
|
TrainingArguments, |
|
|
) |
|
|
|
|
|
from peft import LoraConfig, RandLoraConfig, get_peft_model, prepare_model_for_kbit_training |
|
|
|
|
|
|
|
|
def train_model( |
|
|
base_model: str, |
|
|
data_path: str, |
|
|
output_dir: str, |
|
|
batch_size: int, |
|
|
num_epochs: int, |
|
|
learning_rate: float, |
|
|
cutoff_len: int, |
|
|
val_set_size: int, |
|
|
use_lora: bool, |
|
|
quantize: bool, |
|
|
eval_step: int, |
|
|
save_step: int, |
|
|
device: str, |
|
|
rank: int, |
|
|
randlora_alpha: int, |
|
|
randlora_dropout: float, |
|
|
randlora_target_modules: str, |
|
|
hub_model_id: str, |
|
|
push_to_hub: bool, |
|
|
sparse: bool, |
|
|
very_sparse: bool, |
|
|
): |
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
|
hf_token = os.getenv("HF_TOKEN") |
|
|
|
|
|
|
|
|
device = torch.device(device) |
|
|
print(f"Using device: {device}") |
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model, token=hf_token) |
|
|
|
|
|
|
|
|
device_type = device.type |
|
|
device_module = getattr(torch, device_type, torch.cuda) |
|
|
bf16_suppotrted = device_module.is_available() and device_module.is_bf16_supported() |
|
|
torch_dtype = torch.bfloat16 if bf16_suppotrted else torch.float16 |
|
|
|
|
|
|
|
|
if quantize: |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
base_model, |
|
|
token=hf_token, |
|
|
quantization_config=BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_compute_dtype=torch.bfloat16 if bf16_suppotrted else torch.float16, |
|
|
bnb_4bit_use_double_quant=True, |
|
|
bnb_4bit_quant_type="nf4", |
|
|
), |
|
|
torch_dtype=torch_dtype, |
|
|
) |
|
|
|
|
|
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True) |
|
|
else: |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
base_model, |
|
|
torch_dtype=torch_dtype, |
|
|
token=hf_token, |
|
|
) |
|
|
|
|
|
if use_lora: |
|
|
peft_config = LoraConfig( |
|
|
r=rank, |
|
|
lora_alpha=randlora_alpha, |
|
|
target_modules=(randlora_target_modules.split(",") if randlora_target_modules else ["k_proj", "v_proj"]), |
|
|
lora_dropout=randlora_dropout, |
|
|
bias="none", |
|
|
) |
|
|
else: |
|
|
peft_config = RandLoraConfig( |
|
|
r=rank, |
|
|
randlora_alpha=randlora_alpha, |
|
|
target_modules=(randlora_target_modules.split(",") if randlora_target_modules else ["k_proj", "v_proj"]), |
|
|
randlora_dropout=randlora_dropout, |
|
|
bias="none", |
|
|
sparse=sparse, |
|
|
very_sparse=very_sparse, |
|
|
) |
|
|
|
|
|
|
|
|
model = get_peft_model(model, peft_config) |
|
|
|
|
|
model.to(device) |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
|
|
|
dataset = load_dataset(data_path) |
|
|
|
|
|
def tokenize_function(examples): |
|
|
inputs = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=cutoff_len) |
|
|
inputs["labels"] = inputs["input_ids"].copy() |
|
|
return inputs |
|
|
|
|
|
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=dataset["train"].column_names) |
|
|
|
|
|
|
|
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False) |
|
|
|
|
|
|
|
|
max_steps = int((len(dataset) // batch_size) * num_epochs) |
|
|
|
|
|
|
|
|
training_args = TrainingArguments( |
|
|
output_dir=output_dir, |
|
|
num_train_epochs=num_epochs, |
|
|
per_device_train_batch_size=batch_size, |
|
|
per_device_eval_batch_size=batch_size, |
|
|
warmup_steps=int(max_steps * 0.1), |
|
|
weight_decay=0.01, |
|
|
logging_dir="./logs", |
|
|
logging_steps=eval_step, |
|
|
save_steps=save_step, |
|
|
save_total_limit=2, |
|
|
push_to_hub=push_to_hub, |
|
|
hub_model_id=hub_model_id, |
|
|
gradient_accumulation_steps=16 |
|
|
// batch_size, |
|
|
learning_rate=learning_rate, |
|
|
hub_token=hf_token, |
|
|
label_names=["labels"], |
|
|
) |
|
|
|
|
|
|
|
|
device_module.empty_cache() |
|
|
|
|
|
|
|
|
trainer = Trainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
train_dataset=tokenized_datasets["train"], |
|
|
eval_dataset=tokenized_datasets["test"], |
|
|
data_collator=data_collator, |
|
|
) |
|
|
|
|
|
|
|
|
trainer.train() |
|
|
|
|
|
|
|
|
if push_to_hub: |
|
|
|
|
|
trainer.push_to_hub(commit_message="Fine-tuned model") |
|
|
|
|
|
|
|
|
model.save_pretrained(output_dir) |
|
|
tokenizer.save_pretrained(output_dir) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import argparse |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Fine-tune LLaMA with DoRA and PEFT") |
|
|
parser.add_argument("--base_model", type=str, default="huggyllama/llama-7b", help="Base model path or name") |
|
|
parser.add_argument( |
|
|
"--data_path", type=str, default="timdettmers/openassistant-guanaco", help="Dataset path or name" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output_dir", type=str, default="path/to/output", help="Output directory for the fine-tuned model" |
|
|
) |
|
|
parser.add_argument("--batch_size", type=int, default=1, help="Batch size") |
|
|
parser.add_argument("--num_epochs", type=int, default=1, help="Number of training epochs") |
|
|
parser.add_argument("--learning_rate", type=float, default=3e-4, help="Learning rate") |
|
|
parser.add_argument("--cutoff_len", type=int, default=512, help="Cutoff length for tokenization") |
|
|
parser.add_argument("--val_set_size", type=int, default=500, help="Validation set size") |
|
|
parser.add_argument("--use_lora", action="store_true", help="Apply Lora instead of RandLora") |
|
|
parser.add_argument("--quantize", action="store_true", help="Use quantization") |
|
|
parser.add_argument("--eval_step", type=int, default=10, help="Evaluation step interval") |
|
|
parser.add_argument("--save_step", type=int, default=100, help="Save step interval") |
|
|
parser.add_argument("--device", type=str, default="auto", help="Device to use for training") |
|
|
parser.add_argument("--rank", type=int, default=32, help="RandLora basis rank") |
|
|
parser.add_argument("--randlora_alpha", type=int, default=640, help="RandLora alpha") |
|
|
parser.add_argument("--randlora_dropout", type=float, default=0.05, help="RandLora dropout rate") |
|
|
parser.add_argument( |
|
|
"--randlora_target_modules", type=str, default=None, help="Comma-separated list of target modules for RandLora" |
|
|
) |
|
|
parser.add_argument("--sparse", action="store_true", help="Use sparse matrix multiplication") |
|
|
parser.add_argument("--very_sparse", action="store_true", help="Use very sparse matrix multiplication") |
|
|
parser.add_argument( |
|
|
"--hub_model_id", |
|
|
type=str, |
|
|
default="path/to/repo", |
|
|
help="Repository name to push the model on the Hugging Face Hub", |
|
|
) |
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to Hugging Face Hub") |
|
|
args = parser.parse_args() |
|
|
|
|
|
if args.device == "auto": |
|
|
args.device = torch.accelerator.current_accelerator().type if hasattr(torch, "accelerator") else "cuda" |
|
|
|
|
|
train_model( |
|
|
base_model=args.base_model, |
|
|
data_path=args.data_path, |
|
|
output_dir=args.output_dir, |
|
|
batch_size=args.batch_size, |
|
|
num_epochs=args.num_epochs, |
|
|
learning_rate=args.learning_rate, |
|
|
cutoff_len=args.cutoff_len, |
|
|
val_set_size=args.val_set_size, |
|
|
use_lora=args.use_lora, |
|
|
quantize=args.quantize, |
|
|
eval_step=args.eval_step, |
|
|
save_step=args.save_step, |
|
|
device=args.device, |
|
|
rank=args.rank, |
|
|
randlora_alpha=args.randlora_alpha, |
|
|
randlora_dropout=args.randlora_dropout, |
|
|
randlora_target_modules=args.randlora_target_modules, |
|
|
hub_model_id=args.hub_model_id, |
|
|
push_to_hub=args.push_to_hub, |
|
|
sparse=args.sparse, |
|
|
very_sparse=args.very_sparse, |
|
|
) |
|
|
|