| from transformers import AutoModel, AutoTokenizer | |
| from datasets import load_dataset | |
| from sklearn.cluster import KMeans | |
| from torch.nn.functional import normalize | |
| from scipy.stats import spearmanr | |
| from sklearn.datasets import fetch_20newsgroups | |
| import torch | |
| import numpy as np | |
| if hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): | |
| device = torch.device("mps") | |
| print("Using Apple MPS") | |
| else: | |
| device = torch.device("cpu") | |
| print("Using CPU") | |
| def embed_texts(texts, model, tokenizer, device=device): | |
| ins = tokenizer(texts, padding=True, truncation=True, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| out = model(**ins).last_hidden_state | |
| vecs = out.mean(dim=1) | |
| return normalize(vecs, dim=-1).cpu().numpy() | |
| def spearman_eval(model_name="bert-base-uncased", split="validation"): | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModel.from_pretrained(model_name).eval().to(device) | |
| ds = load_dataset("glue", "stsb", split=split) | |
| sims, gold = [], [] | |
| for ex in ds: | |
| u = embed_texts([ex["sentence1"]], model, tokenizer)[0] | |
| v = embed_texts([ex["sentence2"]], model, tokenizer)[0] | |
| sims.append(float(np.dot(u, v))) | |
| gold.append(ex["label"] / 5.0) | |
| corr, _ = spearmanr(sims, gold) | |
| print(f"BERT Baseline Spearman: {corr:.4f}") | |
| def embed_in_batches(texts, model, tokenizer, batch_size=100): | |
| all_vecs = [] | |
| for i in range(0, len(texts), batch_size): | |
| batch = texts[i : i + batch_size] | |
| vecs = embed_texts(batch, model, tokenizer) | |
| all_vecs.append(vecs) | |
| if device.type == "mps": | |
| torch.mps.empty_cache() | |
| return np.vstack(all_vecs) | |
| def clustering_purity(model_name="bert-base-uncased", sample_size=2000, batch_size=100): | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModel.from_pretrained(model_name).eval().to(device) | |
| ds = load_dataset("SetFit/20_newsgroups", split="train") | |
| texts = ds["text"][:sample_size] | |
| labels = np.array(ds["label"][:sample_size]) | |
| vecs = embed_in_batches(texts, model, tokenizer, batch_size) | |
| clusters = KMeans(n_clusters=len(set(labels)), | |
| random_state=0).fit_predict(vecs) | |
| purity = (clusters == labels).sum() / len(labels) | |
| print(f"Purity (N={sample_size}): {purity:.4f}") | |
| if __name__ == "__main__": | |
| spearman_eval() | |
| clustering_purity() | |