File size: 11,660 Bytes
b87c1b6 d872fa5 bc2cb72 275a10f b78c4e1 b87c1b6 d872fa5 b87c1b6 29ea35b 6b2dd9c 29ea35b d872fa5 b78c4e1 b87c1b6 b78c4e1 24c348f b87c1b6 b78c4e1 b87c1b6 b78c4e1 275a10f b87c1b6 275a10f b87c1b6 275a10f b87c1b6 e34f60e 275a10f b87c1b6 275a10f d872fa5 24c348f b87c1b6 d872fa5 b87c1b6 275a10f d872fa5 b87c1b6 29ea35b 24c348f e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 e34f60e d872fa5 e34f60e b87c1b6 d872fa5 e34f60e d872fa5 b78c4e1 b87c1b6 b78c4e1 b87c1b6 efee1d5 b87c1b6 e34f60e b87c1b6 e34f60e b87c1b6 d872fa5 b78c4e1 b87c1b6 b78c4e1 170fe75 6b2dd9c b78c4e1 b87c1b6 24c348f 6b2dd9c b78c4e1 24c348f b78c4e1 fea8f7a b78c4e1 fea8f7a 6b2dd9c b87c1b6 6b2dd9c b78c4e1 b87c1b6 b78c4e1 b87c1b6 24c348f b87c1b6 137d0c0 24c348f b87c1b6 24c348f b87c1b6 24c348f b87c1b6 24c348f e34f60e b87c1b6 b78c4e1 b87c1b6 b78c4e1 b87c1b6 b78c4e1 b87c1b6 b78c4e1 b87c1b6 6b2dd9c d872fa5 275a10f b87c1b6 6b2dd9c b87c1b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import gradio as gr
import os
import tempfile
import shutil
from typing import Optional, Tuple, Union
from huggingface_hub import InferenceClient, whoami
from pathlib import Path
# Initialize Hugging Face Inference Client with fal-ai provider
client = InferenceClient(
provider="fal-ai",
api_key=os.environ.get("HF_TOKEN"),
bill_to="huggingface",
)
def verify_pro_status(token: Optional[Union[gr.OAuthToken, str]]) -> bool:
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
if not token:
return False
if isinstance(token, gr.OAuthToken):
token_str = token.token
elif isinstance(token, str):
token_str = token
else:
return False
try:
user_info = whoami(token=token_str)
return (
user_info.get("isPro", False) or
any(org.get("isEnterprise", False) for org in user_info.get("orgs", []))
)
except Exception as e:
print(f"Could not verify user's PRO/Enterprise status: {e}")
return False
def cleanup_temp_files():
"""Clean up old temporary video files to prevent storage overflow."""
try:
temp_dir = tempfile.gettempdir()
# Clean up old .mp4 files in temp directory
for file_path in Path(temp_dir).glob("*.mp4"):
try:
# Remove files older than 5 minutes
import time
if file_path.stat().st_mtime < (time.time() - 300):
file_path.unlink(missing_ok=True)
except Exception:
pass
except Exception as e:
print(f"Cleanup error: {e}")
def generate_video(
prompt: str,
duration: int = 8,
size: str = "1280x720",
api_key: Optional[str] = None
) -> Tuple[Optional[str], str]:
"""Generate video using Sora-2 through Hugging Face Inference API with fal-ai provider."""
cleanup_temp_files()
try:
if api_key:
temp_client = InferenceClient(
provider="fal-ai",
api_key=api_key,
bill_to="huggingface",
)
else:
temp_client = client
if not os.environ.get("HF_TOKEN") and not api_key:
return None, "β Please set HF_TOKEN environment variable."
video_bytes = temp_client.text_to_video(
prompt,
model="akhaliq/sora-2",
)
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
try:
temp_file.write(video_bytes)
temp_file.flush()
video_path = temp_file.name
finally:
temp_file.close()
return video_path, "β
Video generated successfully!"
except Exception as e:
return None, f"β Error generating video: {str(e)}"
# --- NEW: image -> video support ---
def generate_video_from_image(
image: Union[str, bytes],
prompt: str,
api_key: Optional[str] = None
) -> Tuple[Optional[str], str]:
"""Generate a video from a single input image + prompt using Sora-2 image-to-video."""
cleanup_temp_files()
if not prompt or prompt.strip() == "":
return None, "β Please enter a prompt"
try:
if api_key:
temp_client = InferenceClient(
provider="fal-ai",
api_key=api_key,
bill_to="huggingface",
)
else:
temp_client = client
if not os.environ.get("HF_TOKEN") and not api_key:
return None, "β Please set HF_TOKEN environment variable."
if isinstance(image, str):
with open(image, "rb") as f:
input_image = f.read()
elif isinstance(image, (bytes, bytearray)):
input_image = image
else:
return None, "β Invalid image input. Please upload an image."
video_bytes = temp_client.image_to_video(
input_image,
prompt=prompt,
model="akhaliq/sora-2-image-to-video",
)
temp_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
try:
temp_file.write(video_bytes)
temp_file.flush()
video_path = temp_file.name
finally:
temp_file.close()
return video_path, "β
Video generated from image successfully!"
except Exception as e:
return None, f"β Error generating video from image: {str(e)}"
def generate_with_pro_auth(
prompt: str,
oauth_token: Optional[gr.OAuthToken] = None
) -> Tuple[Optional[str], str]:
"""Wrapper function that checks if user is PRO before generating video."""
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This app is exclusively for Hugging Face PRO users.")
if not prompt or prompt.strip() == "":
return None, "β Please enter a prompt"
return generate_video(
prompt,
duration=8,
size="1280x720",
api_key=None
)
# --- NEW: PRO-gated wrapper for image -> video ---
def generate_with_pro_auth_image(
prompt: str,
image_path: Optional[str] = None,
oauth_token: Optional[gr.OAuthToken] = None
) -> Tuple[Optional[str], str]:
"""Checks PRO status then calls image->video generator."""
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This app is exclusively for Hugging Face PRO users.")
if not image_path:
return None, "β Please upload an image"
return generate_video_from_image(image=image_path, prompt=prompt, api_key=None)
def simple_generate(prompt: str) -> Optional[str]:
"""Simplified wrapper for examples that only returns video."""
if not prompt or prompt.strip() == "":
return None
video_path, _ = generate_video(prompt, duration=8, size="1280x720", api_key=None)
return video_path
def create_ui():
css = '''
.logo-dark{display: none}
.dark .logo-dark{display: block !important}
.dark .logo-light{display: none}
#sub_title{margin-top: -20px !important}
.pro-badge{
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 4px 12px;
border-radius: 20px;
font-size: 0.9em;
font-weight: bold;
display: inline-block;
margin-left: 8px;
}
'''
with gr.Blocks(title="Sora-2 Text-to-Video Generator", theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 2.5em; margin-bottom: 0.5em;">
π¬ Sora-2 Text-to-Video Generator
<span class="pro-badge">PRO</span>
</h1>
<p style="font-size: 1.1em; color: #666; margin-bottom: 20px;">Generate stunning videos using OpenAI's Sora-2 model</p>
<p id="sub_title" style="font-size: 1em; margin-top: 20px; margin-bottom: 15px;">
<strong>Exclusive access for Hugging Face PRO users.</strong>
<a href="http://huggingface.co/subscribe/pro?source=sora2_video" target="_blank" style="color: #667eea;">Subscribe to PRO β</a>
</p>
<p style="font-size: 0.9em; color: #999; margin-top: 15px;">
Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #667eea;">anycoder</a>
</p>
</div>
""")
gr.LoginButton()
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
with main_interface:
gr.HTML("""<div style="text-align: center; margin: 20px 0;">
<p style="color: #28a745; font-weight: bold;">β¨ Welcome PRO User! You have full access to Sora-2.</p>
</div>""")
# Text -> Video
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="Enter your prompt",
placeholder="Describe the video you want to create...",
lines=4
)
generate_btn = gr.Button("π₯ Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
video_output = gr.Video(label="Generated Video", height=400, interactive=False, show_download_button=True)
status_output = gr.Textbox(label="Status", interactive=False, visible=True)
generate_btn.click(
fn=generate_with_pro_auth,
inputs=[prompt_input],
outputs=[video_output, status_output],
queue=False
)
# --- NEW: Image -> Video UI ---
gr.HTML("""
<div style="text-align: center; margin: 40px 0 10px;">
<h3 style="margin-bottom: 8px;">πΌοΈ β π¬ Image β Video (beta)</h3>
<p style="color:#666; margin:0;">Turn a single image into a short video with a guiding prompt.</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
img_prompt_input = gr.Textbox(
label="Describe how the scene should evolve",
placeholder="e.g., The cat starts to dance and spins playfully",
lines=3,
)
image_input = gr.Image(label="Upload an image", type="filepath")
generate_img_btn = gr.Button("π₯ Generate from Image", variant="primary")
with gr.Column(scale=1):
video_output_img = gr.Video(label="Generated Video (from Image)", height=400, interactive=False, show_download_button=True)
status_output_img = gr.Textbox(label="Status", interactive=False, visible=True)
generate_img_btn.click(
fn=generate_with_pro_auth_image,
inputs=[img_prompt_input, image_input],
outputs=[video_output_img, status_output_img],
queue=False
)
gr.HTML("""<div style="text-align: center; margin-top: 40px; padding: 20px; border-top: 1px solid #e0e0e0;">
<h3 style="color: #667eea;">Thank you for being a PRO user! π€</h3>
</div>""")
def control_access(profile: Optional[gr.OAuthProfile] = None, oauth_token: Optional[gr.OAuthToken] = None):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = "## β¨ Exclusive Access for PRO Users\n\nThis tool is available exclusively for Hugging Face **PRO** members."
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
return demo
if __name__ == "__main__":
try:
cleanup_temp_files()
if os.path.exists("gradio_cached_examples"):
shutil.rmtree("gradio_cached_examples", ignore_errors=True)
except Exception as e:
print(f"Initial cleanup error: {e}")
app = create_ui()
app.launch(show_api=False, enable_monitoring=False, quiet=True, max_threads=10)
|