Daksh0505's picture
Create app.py
1e9abcf verified
raw
history blame
7.16 kB
import streamlit as st
import tensorflow as tf
import json
import joblib
import numpy as np
import pandas as pd
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from datetime import datetime
import os
import gspread
from google.oauth2.service_account import Credentials
from tensorflow.keras.models import load_model
from huggingface_hub import hf_hub_download
from tensorflow.keras.preprocessing.text import tokenizer_from_json
def save_to_google_sheet(data):
scope = [
"https://spreadsheets.google.com/feeds",
"https://www.googleapis.com/auth/drive"
]
# Convert Streamlit's AttrDict to a normal dict (correct way)
creds_dict = {k: v for k, v in st.secrets["gcp_credentials"].items()}
# Handle multiline private key properly
if "private_key" in creds_dict:
creds_dict["private_key"] = creds_dict["private_key"].replace("\\n", "\n")
# Authenticate and connect
creds = Credentials.from_service_account_info(creds_dict, scopes=scope)
client = gspread.authorize(creds)
sheet = client.open("Sentiment Feedback Log").sheet1
# Append row
sheet.append_row([
data.get("timestamp", ""),
data.get("username", ""),
data.get("user_id", ""),
data.get("text", ""),
data.get("model_a", ""),
data.get("model_b", ""),
data.get("ensemble", ""),
data.get("feedback", "")
])
st.set_page_config(page_title="Sentiment Model Comparison", layout="wide")
st.title("๐Ÿ“Š Sentiment Classifier Comparison")
# --- Load models and tokenizers ---
import streamlit as st
from huggingface_hub import hf_hub_download
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.text import tokenizer_from_json
import json
@st.cache_resource
def load_model_and_tokenizer(model_file, tokenizer_file):
model_path = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename=model_file)
tokenizer_path = hf_hub_download(repo_id="Daksh0505/sentiment-model-imdb", filename=tokenizer_file)
with open(tokenizer_path, "r") as f:
tokenizer = tokenizer_from_json(f.read())
model = load_model(model_path)
return model, tokenizer
# === Load Cached Models ===
model_a, tokenizer_a = load_model_and_tokenizer("sentiment_model_imdb_6.6M.keras", "tokenizer_50k.json") # 6.6M params & 50K vocab
model_b, tokenizer_b = load_model_and_tokenizer("sentiment_model_imdb_34M.keras", "tokenizer_256k.json") # 34M params & 256K vocab
# --- Constants ---
maxlen = 300
labels = ["Negative", "Neutral", "Positive"]
# --- Preprocess ---
def preprocess(text, tokenizer):
text = text.lower()
seq = tokenizer.texts_to_sequences([text])
padded = pad_sequences(seq, maxlen=maxlen, padding='post')
return padded
# --- Format Output ---
def format_probs(probs):
return {labels[i]: f"{probs[i]*100:.2f}%" for i in range(3)}
# --- Text Input ---
st.markdown("### ๐Ÿ“ Enter a review:")
text = st.text_area("", height=150)
# --- File Upload ---
st.markdown("---")
file = st.file_uploader("๐Ÿ“‚ Or upload a CSV file with a 'review' column for bulk analysis", type=["csv"])
# Optional: User identification
user_name = st.text_input("๐Ÿ” Enter your name:")
user_id = st.text_input("๐Ÿ” Enter your email (optional):")
pred_a = pred_b = ensemble_label = None
if st.button("๐Ÿ” Analyze") and (text.strip() or file):
if text.strip():
padded_a = preprocess(text, tokenizer_a)
padded_b = preprocess(text, tokenizer_b)
pred_a = model_a.predict(padded_a)[0]
pred_b = model_b.predict(padded_b)[0]
ensemble_pred = (pred_a + pred_b) / 2
ensemble_label = labels[int(ensemble_pred.argmax())]
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("๐Ÿ”น Model A")
st.caption("๐Ÿง  6M Parameters | ๐Ÿ“– 50k Vocab")
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(pred_a).items()]))
st.write(f"โ†’ **Predicted:** _{labels[int(pred_a.argmax())]}_")
with col2:
st.subheader("๐Ÿ”ธ Model B")
st.caption("๐Ÿง  34M Parameters | ๐Ÿ“– 256k Vocab")
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(pred_b).items()]))
st.write(f"โ†’ **Predicted:** _{labels[int(pred_b.argmax())]}_")
with col3:
st.subheader("โš–๏ธ Ensemble Average")
st.caption("๐Ÿงฎ Averaged Output (A + B)")
st.markdown(" | ".join([f"**{l}:** {v}" for l, v in format_probs(ensemble_pred).items()]))
st.write(f"โ†’ **Final Sentiment:** โœ… _{ensemble_label}_")
st.markdown("### ๐Ÿ“ˆ Confidence Comparison")
st.bar_chart({
"Model A": pred_a,
"Model B": pred_b,
"Ensemble": ensemble_pred
})
if file:
df = pd.read_csv(file)
if 'review' not in df.columns:
st.error("CSV must contain a 'review' column.")
else:
preds = []
for text in df['review']:
padded_a = preprocess(text, tokenizer_a)
padded_b = preprocess(text, tokenizer_b)
pred_a = model_a.predict(padded_a)[0]
pred_b = model_b.predict(padded_b)[0]
ensemble = (pred_a + pred_b) / 2
preds.append(labels[int(ensemble.argmax())])
df['Predicted Sentiment'] = preds
st.dataframe(df)
st.download_button("๐Ÿ“ฅ Download Results", df.to_csv(index=False), file_name="sentiment_predictions.csv")
# --- Info Panel ---
with st.expander("โ„น๏ธ Model Details"):
st.markdown("""
- **Model A**: Smaller model, faster, trained on 50k vocab.
- **Model B**: Larger model, more accurate, trained on 256k vocab.
- Ensemble averages predictions from both.
""")
# --- Feedback ---
st.markdown("---")
st.markdown("### ๐Ÿ’ฌ Feedback")
feedback = st.radio("Was the prediction helpful?", ["๐Ÿ‘ Yes", "๐Ÿ‘Ž No", "No comment"], horizontal=True)
if feedback and (user_name.strip() or user_id.strip() or text.strip()):
st.success("Thanks for your feedback! โœ…")
feedback_data = {
"timestamp": datetime.now().isoformat(),
"username": user_name,
"user_id": user_id,
"text": text if text else None,
"model_a": labels[int(pred_a.argmax())] if pred_a is not None else None,
"model_b": labels[int(pred_b.argmax())] if pred_b is not None else None,
"ensemble": ensemble_label if ensemble_label is not None else None,
"feedback": feedback if feedback != "No comment" else None,
}
# Save to local CSV
log_path = "user_feedback.csv"
feedback_df = pd.DataFrame([feedback_data])
if not os.path.exists(log_path):
feedback_df.to_csv(log_path, index=False)
else:
feedback_df.to_csv(log_path, mode='a', header=False, index=False)
# Save to Google Sheets
try:
save_to_google_sheet(feedback_data)
except Exception as e:
st.error(f"Error saving feedback to Google Sheets: {e}")