Spaces:
Paused
Paused
File size: 11,585 Bytes
b620462 f9273cb 5437ff2 e1b65d6 f9273cb e15852f b620462 e1b65d6 aed1d52 334fca3 3e3aea4 84e6f43 e1b65d6 334fca3 e1b65d6 91126af e1b65d6 523acb1 e1b65d6 523acb1 4c18b68 e1b65d6 b620462 5437ff2 4c18b68 b620462 e1b65d6 5437ff2 4c18b68 b620462 e1b65d6 4c18b68 5437ff2 e1b65d6 5437ff2 4c18b68 e1b65d6 5437ff2 4c18b68 e1b65d6 4c18b68 b620462 8f9985f e1b65d6 5437ff2 e1b65d6 5437ff2 e1b65d6 5437ff2 e1b65d6 f9273cb 5437ff2 e1b65d6 5437ff2 f9273cb 7c406db 4c18b68 f9273cb b620462 f9273cb b620462 f9273cb e1b65d6 8f9985f 91126af e1b65d6 aed1d52 91126af f9273cb e1b65d6 3ba04e0 e1b65d6 91126af e1b65d6 af8c6cf e1b65d6 91126af e1b65d6 91126af e1b65d6 91126af e1b65d6 91126af e1b65d6 b620462 e1b65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from transformers.cache_utils import DynamicCache
import torch
import itertools
from threading import Thread
import spaces
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
MODEL_IDS = [
"70M",
"160M",
"410M",
"Bronze",
"Silver",
"Gold"
]
MODEL_MAPPING = {
model_id: f"LinguaCustodia/FinTranslate-{model_id}"
for model_id in MODEL_IDS
}
MODEL_INDEX = {m: i for i, m in enumerate(MODEL_IDS)}
TOKENIZER = AutoTokenizer.from_pretrained(
MODEL_MAPPING["70M"],
pad_token="<pad>",
mask_token="<mask>",
eos_token="<eos>",
padding_side="left",
max_position_embeddings=512,
model_max_length=512,
)
MODELS = {
model_name: AutoModelForCausalLM.from_pretrained(
model_id,
max_position_embeddings=512,
device_map=DEVICE,
torch_dtype=torch.bfloat16,
)
for model_name, model_id in MODEL_MAPPING.items()
}
DOMAINS = [
"Auto",
"Asset management marketing",
"Annual report",
"Corporate action",
"Equity research",
"Fund fact sheet",
"Kiid",
"Life insurance",
"Regulatory",
"General",
]
DOMAIN_MAPPING = {
"Auto": None,
"Asset management marketing": "am",
"Annual report": "ar",
"Corporate action": "corporateAction",
"Equity research": "equi",
"Fund fact sheet": "ffs",
"Kiid": "kiid",
"Life insurance": "lifeInsurance",
"Regulatory": "regulatory",
"General": "general",
}
DOMAIN_MAPPING_REVERSED = {v: k for k, v in DOMAIN_MAPPING.items()}
LANG2CODE = {
"English": "en",
"German": "de",
"Spanish": "es",
"French": "fr",
"Italian": "it",
"Dutch": "nl",
"Swedish": "sv",
"Portuguese": "pt",
}
CODE2LANG = {v: k for k, v in LANG2CODE.items()}
LANGUAGES = sorted(LANG2CODE.keys())
def build_language_token(lang):
return f"<lang_{lang}>"
def build_domain_token(dom):
return f"<dom_{dom}>"
def language_token_to_str(token):
return token[6:-1]
def domain_token_to_str(token):
return token[5:-1]
def format_input(src, tgt_lang, src_lang, domain):
tgt_lang_token = build_language_token(tgt_lang)
prefix = TOKENIZER.eos_token
base_input = f"{prefix}{src}</src>{tgt_lang_token}"
if src_lang is None:
return base_input
else:
src_lang_token = build_language_token(src_lang)
base_input = f"{base_input}{src_lang_token}"
if domain is None:
return base_input
else:
dom_token = build_domain_token(domain)
base_input = f"{base_input}{dom_token}"
return base_input
@spaces.GPU(duration=120)
def translate_with_model(model_name, text, tgt_lang, src_lang, domain):
model = MODELS[model_name]
formatted_text = format_input(text, tgt_lang, src_lang, domain)
inputs = TOKENIZER(
formatted_text,
return_attention_mask=True,
return_tensors="pt",
return_token_type_ids=False,
)
for k, v in inputs.items():
inputs[k] = v.to(DEVICE)
src_lang_provided = src_lang is not None
domain_provided = domain is not None
need_format_again = not (src_lang_provided and domain_provided)
past_key_values = DynamicCache()
cache_position = torch.arange(
inputs["input_ids"].size(1), dtype=torch.int64, device=DEVICE
)
if not src_lang_provided:
# Need to predict src lang
with torch.inference_mode():
outputs = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
use_cache=True,
past_key_values=past_key_values,
cache_position=cache_position,
)
src_lang_token_id = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(0)
src_lang = language_token_to_str(
TOKENIZER.convert_ids_to_tokens(src_lang_token_id.squeeze().item())
)
cache_position = cache_position[-1:] + 1
attention_mask = inputs["attention_mask"]
attention_mask = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.size(0), 1))],
dim=-1,
)
inputs = {"input_ids": src_lang_token_id, "attention_mask": attention_mask}
if not domain_provided:
# Need to predict domain
with torch.inference_mode():
outputs = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
use_cache=True,
past_key_values=past_key_values,
)
domain_token_id = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(0)
domain = domain_token_to_str(
TOKENIZER.convert_ids_to_tokens(domain_token_id.squeeze().item())
)
cache_position = cache_position[-1:] + 1
attention_mask = inputs["attention_mask"]
attention_mask = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.size(0), 1))],
dim=-1,
)
inputs = {"input_ids": domain_token_id, "attention_mask": attention_mask}
elif not src_lang_provided:
# in this case, src_lang was not provided, but domain was.
# So we still need to run a forward pass to build the kv cache for the domain token
dom_token = build_domain_token(domain)
# dom_token = "<dom_general>"
domain = domain_token_to_str(dom_token)
domain_token_id = TOKENIZER.convert_tokens_to_ids(dom_token)
inputs["input_ids"] = torch.hstack(
[inputs["input_ids"], torch.tensor([[domain_token_id]], device=DEVICE)]
)
inputs["attention_mask"] = torch.hstack(
[inputs["attention_mask"], inputs["attention_mask"].new_ones((1, 1))]
)
cache_position = torch.hstack([cache_position, cache_position[-1:] + 1])
if need_format_again:
formatted_text = format_input(text, tgt_lang, src_lang, domain)
inputs = TOKENIZER(
formatted_text,
return_attention_mask=True,
return_tensors="pt",
return_token_type_ids=False,
)
for k, v in inputs.items():
inputs[k] = v.to(DEVICE)
domain_token_pos = inputs["input_ids"].size(1) - 1
src_lang_token_pos = domain_token_pos - 1
_tgt_lang_token_pos = src_lang_token_pos - 1
streamer = TextIteratorStreamer(TOKENIZER, skip_prompt=True)
generation_kwargs = dict(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
num_beams=1,
max_new_tokens=500,
past_key_values=past_key_values,
streamer=streamer,
eos_token_id=TOKENIZER.eos_token_id,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_translation = ""
for new_text in streamer:
generated_translation += new_text.replace(TOKENIZER.eos_token, "")
yield {
"model": model_name,
"source_lang": CODE2LANG[src_lang],
"domain": DOMAIN_MAPPING_REVERSED[domain],
"translation": generated_translation,
}
@spaces.GPU(duration=120)
def translate_with_all_models(selected_models, text, tgt_lang, src_lang, domain):
tgt_lang = LANG2CODE[tgt_lang]
src_lang = None if src_lang == "Auto" else LANG2CODE.get(src_lang)
domain = DOMAIN_MAPPING[domain]
outputs = [None] * (3 * len(MODEL_IDS))
outputs = list(
itertools.chain.from_iterable(
(
["Processing..."] * 3
if model_id in selected_models
else ["This model is disabled"] * 3
)
for model_id in MODEL_IDS
)
)
for model_id in selected_models:
i = MODEL_INDEX[model_id]
for model_output in translate_with_model(
model_id, text, tgt_lang, src_lang, domain
):
outputs[i * 3] = model_output["translation"]
outputs[i * 3 + 1] = model_output["source_lang"]
outputs[i * 3 + 2] = model_output["domain"]
yield outputs
with gr.Blocks() as demo:
with gr.Row(variant="default"):
title = "🌐 Multilingual Multidomain Financial Translator"
description = """<p>Specialized Translation for Financial Texts across 8 Languages and 9 Domains</p>"""
gr.HTML(f"<h1>{title}</h1>\n<p>{description}</p>")
with gr.Row(variant="panel"):
with gr.Column(variant="default"):
selected_models = gr.CheckboxGroup(
choices=MODEL_IDS,
value=MODEL_IDS,
type="value",
label="Models",
container=True,
)
source_text = gr.Textbox(lines=3, label="Source sentence")
with gr.Column(variant="default"):
source_language = gr.Dropdown(
LANGUAGES + ["Auto"], value="Auto", label="Source language"
)
target_language = gr.Dropdown(
LANGUAGES, value="French", label="Target language"
)
with gr.Column(variant="default"):
domain = gr.Radio(DOMAINS, value="Auto", label="Domain")
with gr.Row():
translate_btn = gr.Button("Translate", variant="primary")
with gr.Row(variant="panel"):
outputs = {}
for model_id in MODEL_IDS:
with gr.Tab(model_id):
outputs[model_id] = {
"translation": gr.Textbox(
lines=2, label="Translation", container=True
),
"source_lang": gr.Textbox(
label="Predicted source language",
info='This is the predicted source language, if "Auto" is selected.',
container=True,
),
"domain": gr.Textbox(
label="Predicted domain",
info='This is the predicted domain, if "Auto" is checked.',
container=True,
),
}
gr.HTML(
f"<p>Model: <a href='https://huggingface.co/LinguaCustodia/multilingual-multidomain-fin-mt-{model_id}' target='_blank'>LinguaCustodia/multilingual-multidomain-fin-mt-{model_id}</a></p>"
)
with gr.Row(variant="panel"):
gr.HTML(
"""<p><strong>Please cite this work as:</strong>\n\n<pre>@inproceedings{DBLP:conf/wmt/CaillautNQLB24,
author = {Ga{\"{e}}tan Caillaut and
Mariam Nakhl{\'{e}} and
Raheel Qader and
Jingshu Liu and
Jean{-}Gabriel Barthelemy},
title = {Scaling Laws of Decoder-Only Models on the Multilingual Machine Translation Task},
booktitle = {{WMT}},
pages = {1318--1331},
publisher = {Association for Computational Linguistics},
year = {2024}
}</pre></p>"""
)
translate_btn.click(
fn=translate_with_all_models,
inputs=[selected_models, source_text, target_language, source_language, domain],
outputs=list(
itertools.chain.from_iterable(
[outputs[model_id][k] for k in ("translation", "source_lang", "domain")]
for model_id in MODEL_IDS
)
),
)
demo.launch()
|