File size: 7,346 Bytes
b620462
4c18b68
e1b65d6
 
b620462
e1b65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c18b68
 
 
 
 
 
 
 
 
 
e1b65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b620462
4c18b68
 
b620462
e1b65d6
4c18b68
 
b620462
e1b65d6
 
 
 
 
 
 
 
 
4c18b68
 
e1b65d6
 
 
 
 
 
 
4c18b68
 
e1b65d6
 
 
 
4c18b68
 
e1b65d6
4c18b68
b620462
e1b65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c18b68
b620462
e1b65d6
 
 
b620462
e1b65d6
 
 
 
b620462
e1b65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b620462
e1b65d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import itertools

DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
MODEL_IDS = [
    "70M",
    # "160M",
]
MODEL_MAPPING = {
    model_id: f"LinguaCustodia/multilingual-multidomain-fin-mt-{model_id}"
    for model_id in MODEL_IDS
}
TOKENIZER = AutoTokenizer.from_pretrained(
    MODEL_MAPPING["70M"],
    pad_token="<pad>",
    mask_token="<mask>",
    eos_token="<eos>",
    padding_side="left",
    max_position_embeddings=512,
    model_max_length=512,
)
MODELS = {
    model_name: AutoModelForCausalLM.from_pretrained(
        model_id,
        max_position_embeddings=512,
        device_map=DEVICE,
        torch_dtype=torch.bfloat16,
    )
    for model_name, model_id in MODEL_MAPPING.items()
}

DOMAINS = [
    "Auto",
    "Asset manangement",
    "Annual report",
    "Corporate action",
    "Equity research",
    "Fund fact sheet",
    "Kiid",
    "Life insurance",
    "Regulatory",
    "General",
]

DOMAIN_MAPPING = {
    "Auto": None,
    "Asset management": "am",
    "Annual report": "ar",
    "Corporate action": "corporateAction",
    "Equity research": "equi",
    "Fund fact sheet": "ffs",
    "Kiid": "kiid",
    "Life insurance": "lifeInsurance",
    "Regulatory": "regulatory",
    "General": "general",
}
DOMAIN_MAPPING_REVERSED = {v: k for k, v in DOMAIN_MAPPING.items()}

LANG2CODE = {
    "English": "en",
    "German": "de",
    "Spanish": "es",
    "French": "fr",
    "Italian": "it",
    "Dutch": "nl",
    "Swedish": "sv",
    "Portuguese": "pt",
}
CODE2LANG = {v: k for k, v in LANG2CODE.items()}
LANGUAGES = sorted(LANG2CODE.keys())


def language_token(lang):
    return f"<lang_{lang}>"


def domain_token(dom):
    return f"<dom_{dom}>"


def language_token_to_str(token):
    return token[6:-1]


def domain_token_to_str(token):
    return token[5:-1]


def format_input(src, tgt_lang, src_lang, domain):
    tgt_lang_token = language_token(tgt_lang)

    prefix = TOKENIZER.eos_token

    base_input = f"{prefix}{src}</src>{tgt_lang_token}"
    if src_lang is None:
        return base_input
    else:
        src_lang_token = language_token(src_lang)
        base_input = f"{base_input}{src_lang_token}"

    if domain is None:
        return base_input
    else:
        dom_token = domain_token(domain)
        base_input = f"{base_input}{dom_token}"

    return base_input


def translate_with_model(model_name, text, tgt_lang, src_lang, domain):
    model = MODELS[model_name]
    formatted_text = format_input(text, tgt_lang, src_lang, domain)

    inputs = TOKENIZER(formatted_text, return_tensors="pt", return_token_type_ids=False)
    for k, v in inputs.items():
        inputs[k] = v.to(DEVICE)

    if src_lang is None:
        domain_token_pos = inputs["input_ids"].size(1) + 1
    elif domain is None:
        domain_token_pos = inputs["input_ids"].size(1)
    else:
        domain_token_pos = inputs["input_ids"].size(1) - 1
    src_lang_token_pos = domain_token_pos - 1
    _tgt_lang_token_pos = src_lang_token_pos - 1

    outputs = model.generate(
        **inputs,
        num_beams=5,
        length_penalty=0.65,
        max_new_tokens=500,
        pad_token_id=TOKENIZER.pad_token_id,
        eos_token_id=TOKENIZER.eos_token_id,
    )

    generated_translation = TOKENIZER.decode(
        outputs[0, domain_token_pos + 1 :], skip_special_tokens=True
    )

    source_language_token = TOKENIZER.convert_ids_to_tokens(
        outputs[0, src_lang_token_pos].item()
    )
    domain_token = TOKENIZER.convert_ids_to_tokens(outputs[0, domain_token_pos].item())

    return {
        "model": model_name,
        "source_lang": CODE2LANG[language_token_to_str(source_language_token)],
        "domain": DOMAIN_MAPPING_REVERSED[domain_token_to_str(domain_token)],
        "translation": generated_translation,
    }


def translate_with_all_models(text, tgt_lang, src_lang, domain):
    tgt_lang = LANG2CODE[tgt_lang]
    src_lang = None if src_lang == "Auto" else LANG2CODE.get(src_lang)
    domain = DOMAIN_MAPPING[domain]

    res = {
        model_name: translate_with_model(model_name, text, tgt_lang, src_lang, domain)
        for model_name in MODEL_IDS
    }
    return list(
        itertools.chain.from_iterable(
            [res[model_id][k] for k in ("translation", "source_lang", "domain")]
            for model_id in MODEL_IDS
        )
    )


with gr.Blocks() as demo:
    with gr.Row(variant="default"):
        title = "🌐 Multilingual Multidomain Financial Translator"
        description = """<p>Specialized Translation for Financial Documents across 8 Languages and 9 Domains</p>"""
        gr.HTML(f"<h1>{title}</h1>\n<p>{description}</p>")

    with gr.Row(variant="panel"):
        with gr.Column(variant="default"):
            source_text = gr.Textbox(lines=3, label="Source sentence")
        with gr.Column(variant="default"):
            target_language = gr.Dropdown(
                LANGUAGES, value="French", label="Target language"
            )
            source_language = gr.Dropdown(
                LANGUAGES + ["Auto"], value="Auto", label="Source language"
            )
        with gr.Column(variant="default"):
            domain = gr.Radio(DOMAINS, value="Auto", label="Domain")

    with gr.Row():
        translate_btn = gr.Button("Translate", variant="primary")

    with gr.Row(variant="panel"):
        outputs = {}
        for model_id in MODEL_IDS:
            with gr.Tab(model_id):
                outputs[model_id] = {
                    "translation": gr.Textbox(lines=2, label="Translation"),
                    "source_lang": gr.Textbox(
                        label="Predicted source language",
                        info='This is the predicted source language, if "Auto" is selected.',
                    ),
                    "domain": gr.Textbox(
                        label="Predicted domain",
                        info='This is the predicted domain, if "Auto" is checked.',
                    ),
                }
                gr.HTML(
                    f"<p>Model: <a href='https://huggingface.co/LinguaCustodia/multilingual-multidomain-fin-mt-{model_id}' target='_blank'>LinguaCustodia/multilingual-multidomain-fin-mt-{model_id}</a></p>"
                )

    with gr.Row(variant="panel"):
        gr.HTML(
            """<p><strong>Please cite this work as:</strong>\n\n<pre>@inproceedings{DBLP:conf/wmt/CaillautNQLB24,
  author       = {Ga{\"{e}}tan Caillaut and
                  Mariam Nakhl{\'{e}} and
                  Raheel Qader and
                  Jingshu Liu and
                  Jean{-}Gabriel Barthelemy},
  title        = {Scaling Laws of Decoder-Only Models on the Multilingual Machine Translation Task},
  booktitle    = {{WMT}},
  pages        = {1318--1331},
  publisher    = {Association for Computational Linguistics},
  year         = {2024}
}</pre></p>"""
        )

    translate_btn.click(
        fn=translate_with_all_models,
        inputs=[source_text, target_language, source_language, domain],
        outputs=list(
            itertools.chain.from_iterable(
                [outputs[model_id][k] for k in ("translation", "source_lang", "domain")]
                for model_id in MODEL_IDS
            )
        ),
    )

demo.launch()