Spaces:
Sleeping
Sleeping
File size: 58,988 Bytes
682910a f928396 682910a cc4ae68 682910a 2ac757d cc4ae68 682910a cc4ae68 2ac757d 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a f9201f6 682910a f9201f6 cc4ae68 f9201f6 cc4ae68 f9201f6 cc4ae68 f9201f6 cc4ae68 f9201f6 cc4ae68 682910a f9201f6 682910a f9201f6 cc4ae68 f9201f6 cc4ae68 682910a cc4ae68 f9201f6 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 0d9403e 17077fb 0d9403e 571e7a2 9125925 f928396 9125925 0d9403e 716bbdf 0d9403e 571e7a2 f928396 410bdfe 64b1dd3 0d9403e 410bdfe 0d9403e 571e7a2 0d9403e 716bbdf 0d9403e 571e7a2 0577310 17077fb 0577310 0d9403e 410bdfe 0d9403e 571e7a2 0d9403e 17077fb 0d9403e a44fa5c 0d9403e a44fa5c 0d9403e a44fa5c 0d9403e 17077fb 0d9403e a44fa5c 0d9403e a44fa5c 17077fb a44fa5c 0d9403e 571e7a2 0d9403e a44fa5c 17077fb a44fa5c 0d9403e 17077fb 0d9403e 571e7a2 17077fb 0d9403e 17077fb 716bbdf 17077fb 0d9403e 17077fb 47285c1 17077fb 0d9403e 17077fb 571e7a2 17077fb 64b1dd3 0d9403e 17077fb 410bdfe 0d9403e 17077fb 0d9403e 17077fb 0d9403e 17077fb 0d9403e 039b004 47285c1 039b004 47285c1 039b004 47285c1 039b004 47285c1 039b004 cc4ae68 682910a cc4ae68 682910a cc4ae68 f9201f6 cc4ae68 f9201f6 682910a cc4ae68 f9201f6 cc4ae68 f9201f6 cc4ae68 f9201f6 cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a f9201f6 682910a f9201f6 682910a cc4ae68 f9201f6 cc4ae68 682910a cc4ae68 f9201f6 cc4ae68 f9201f6 cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a 571e7a2 0d9403e f928396 2b91d4c 571e7a2 2b91d4c 571e7a2 2b91d4c 571e7a2 2b91d4c 251ab1b 2b91d4c 251ab1b 2b91d4c 251ab1b 2b91d4c bfb6a62 039b004 47285c1 039b004 bfb6a62 0d9403e bfb6a62 0d9403e 039b004 0d9403e bfb6a62 0d9403e bfb6a62 0d9403e bfb6a62 039b004 47285c1 039b004 bfb6a62 0d9403e bfb6a62 0d9403e bfb6a62 039b004 bfb6a62 0d9403e bfb6a62 0d9403e bfb6a62 0d9403e bfb6a62 039b004 bfb6a62 0d9403e bfb6a62 0d9403e cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 682910a cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 542f3b7 cc4ae68 682910a cc4ae68 682910a cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 0d9403e cc4ae68 682910a 7a76de9 eeff6eb 69b86e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 |
import gradio as gr
from gradio_client import Client, handle_file
import json
import os
import re
from datetime import datetime
from typing import List, Optional
from huggingface_hub import HfApi, hf_hub_download, list_repo_files
from pathlib import Path
import tempfile
from auth import verify_hf_token
# HuggingFace configuration
HF_TOKEN = os.getenv("HF_TOKEN") # Required for writing to dataset
DATASET_REPO = "Fraser/piclets" # Public dataset repository
DATASET_TYPE = "dataset"
# Initialize HuggingFace API with token if available
api = HfApi(token=HF_TOKEN) if HF_TOKEN else HfApi()
# Cache directory for local operations
CACHE_DIR = Path("cache")
CACHE_DIR.mkdir(exist_ok=True)
class PicletDiscoveryService:
"""Manages Piclet discovery using HuggingFace datasets"""
@staticmethod
def normalize_object_name(name: str) -> str:
"""
Normalize object names for consistent storage and lookup
Examples: "The Blue Pillow" -> "pillow", "wooden chairs" -> "wooden_chair"
"""
if not name:
return "unknown"
# Convert to lowercase and strip
name = name.lower().strip()
# Remove articles (the, a, an)
name = re.sub(r'^(the|a|an)\s+', '', name)
# Remove special characters except spaces
name = re.sub(r'[^a-z0-9\s]', '', name)
# Handle common plurals (basic pluralization rules)
if name.endswith('ies') and len(name) > 4:
name = name[:-3] + 'y' # berries -> berry
elif name.endswith('ves') and len(name) > 4:
name = name[:-3] + 'f' # leaves -> leaf
elif name.endswith('es') and len(name) > 3:
# Check if it's a special case like "glasses"
if not name.endswith(('ses', 'xes', 'zes', 'ches', 'shes')):
name = name[:-2] # boxes -> box (but keep glasses)
elif name.endswith('s') and len(name) > 2 and not name.endswith('ss'):
name = name[:-1] # chairs -> chair (but keep glass)
# Replace spaces with underscores
name = re.sub(r'\s+', '_', name.strip())
return name
@staticmethod
def load_piclet_data(object_name: str) -> Optional[dict]:
"""Load Piclet data from HuggingFace dataset"""
try:
normalized_name = PicletDiscoveryService.normalize_object_name(object_name)
file_path = f"piclets/{normalized_name}.json"
# Download the file from HuggingFace
local_path = hf_hub_download(
repo_id=DATASET_REPO,
filename=file_path,
repo_type=DATASET_TYPE,
token=HF_TOKEN,
cache_dir=str(CACHE_DIR)
)
with open(local_path, 'r') as f:
return json.load(f)
except Exception as e:
print(f"Could not load piclet data for {object_name}: {e}")
return None
@staticmethod
def save_piclet_data(object_name: str, data: dict) -> bool:
"""Save Piclet data to HuggingFace dataset"""
try:
normalized_name = PicletDiscoveryService.normalize_object_name(object_name)
file_path = f"piclets/{normalized_name}.json"
# Create a temporary file
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(data, f, indent=2)
temp_path = f.name
# Upload to HuggingFace
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=file_path,
repo_id=DATASET_REPO,
repo_type=DATASET_TYPE,
commit_message=f"Update piclet: {normalized_name}"
)
# Clean up
os.unlink(temp_path)
return True
except Exception as e:
print(f"Failed to save piclet data: {e}")
return False
@staticmethod
def load_user_data(sub: str) -> dict:
"""
Load user profile from dataset by HF user ID (sub)
Args:
sub: HuggingFace user ID (stable identifier)
Returns:
User profile dict or default profile if not found
"""
try:
file_path = f"users/{sub}.json"
local_path = hf_hub_download(
repo_id=DATASET_REPO,
filename=file_path,
repo_type=DATASET_TYPE,
token=HF_TOKEN,
cache_dir=str(CACHE_DIR)
)
with open(local_path, 'r') as f:
return json.load(f)
except:
# Return default user profile if not found
# Will be populated with actual data on first save
return {
"sub": sub,
"preferred_username": None,
"name": None,
"picture": None,
"joinedAt": datetime.now().isoformat(),
"lastSeen": datetime.now().isoformat(),
"discoveries": [],
"uniqueFinds": 0,
"totalFinds": 0,
"rarityScore": 0,
"visibility": "public"
}
@staticmethod
def save_user_data(sub: str, data: dict) -> bool:
"""
Save user profile to dataset by HF user ID (sub)
Args:
sub: HuggingFace user ID (stable identifier)
data: User profile dict
Returns:
True if successful, False otherwise
"""
try:
file_path = f"users/{sub}.json"
# Update lastSeen timestamp
data["lastSeen"] = datetime.now().isoformat()
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
json.dump(data, f, indent=2)
temp_path = f.name
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=file_path,
repo_id=DATASET_REPO,
repo_type=DATASET_TYPE,
commit_message=f"Update user profile: {data.get('preferred_username', sub)}"
)
os.unlink(temp_path)
return True
except Exception as e:
print(f"Failed to save user data: {e}")
return False
@staticmethod
def get_or_create_user_profile(user_info: dict) -> dict:
"""
Get existing user profile or create new one from OAuth user_info
Refreshes cached profile data on each call
Args:
user_info: OAuth user info from HF (sub, preferred_username, name, picture)
Returns:
User profile dict
"""
sub = user_info['sub']
# Load existing profile
profile = PicletDiscoveryService.load_user_data(sub)
# Update cached profile fields from OAuth
profile['sub'] = sub
profile['preferred_username'] = user_info.get('preferred_username')
profile['name'] = user_info.get('name')
profile['picture'] = user_info.get('picture')
profile['email'] = user_info.get('email')
# Set joinedAt only if this is a new profile
if 'joinedAt' not in profile or not profile['joinedAt']:
profile['joinedAt'] = datetime.now().isoformat()
return profile
@staticmethod
def update_global_stats() -> dict:
"""Update and return global statistics"""
try:
# Try to load existing stats
try:
local_path = hf_hub_download(
repo_id=DATASET_REPO,
filename="metadata/stats.json",
repo_type=DATASET_TYPE,
token=HF_TOKEN,
cache_dir=str(CACHE_DIR)
)
with open(local_path, 'r') as f:
stats = json.load(f)
except:
stats = {
"totalDiscoveries": 0,
"uniqueObjects": 0,
"totalVariations": 0,
"lastUpdated": datetime.now().isoformat()
}
return stats
except Exception as e:
print(f"Failed to update global stats: {e}")
return {}
class PicletGeneratorService:
"""
Orchestrates Piclet generation by calling external AI services
Uses user's hf_token to consume their GPU quota
"""
# Space endpoints
JOY_CAPTION_SPACE = "fancyfeast/joy-caption-alpha-two"
GPT_OSS_SPACE = "amd/gpt-oss-120b-chatbot"
QWEN_IMAGE_SPACE = "multimodalart/Qwen-Image-Fast"
@staticmethod
def generate_enhanced_caption(image_path: str, hf_token: str) -> str:
"""Generate detailed image description using JoyCaption
Args:
image_path: Path to image file
hf_token: User's HuggingFace token
"""
try:
print(f"Connecting to JoyCaption space with user token...")
client = Client(
PicletGeneratorService.JOY_CAPTION_SPACE,
hf_token=hf_token
)
print(f"Generating caption for image...")
result = client.predict(
handle_file(image_path), # Wrap path so client uploads file
"Descriptive", # caption_type
"medium-length", # caption_length
[], # extra_options
"", # name_input
"Describe this image in detail, identifying any recognizable objects, brands, logos, or specific models. Be specific about product names and types.", # custom_prompt
api_name="/stream_chat"
)
# JoyCaption returns tuple: (prompt_used, caption_text) in .data
result_data = result.data if hasattr(result, 'data') else result
caption = result_data[1] if isinstance(result_data, (list, tuple)) and len(result_data) > 1 else str(result_data)
print(f"Caption generated: {caption[:100]}...")
return caption
except Exception as e:
print(f"Failed to generate caption: {e}")
raise Exception(f"Caption generation failed: {str(e)}")
@staticmethod
def generate_text_with_gpt(prompt: str, hf_token: str) -> str:
"""Generate text using GPT-OSS-120B"""
try:
print(f"Connecting to GPT-OSS space...")
client = Client(
PicletGeneratorService.GPT_OSS_SPACE,
hf_token=hf_token
)
print(f"Generating text...")
result = client.predict(
prompt, # message (positional)
"You are a helpful assistant that creates Pokรฉmon-style monster concepts based on real-world objects.", # system_prompt (positional)
0.7, # temperature (positional)
api_name="/chat"
)
# Extract response text (GPT-OSS formats with Analysis and Response)
result_data = result.data if hasattr(result, 'data') else result
response_text = result_data[0] if isinstance(result_data, (list, tuple)) else str(result_data)
# Try to extract Response section
response_match = re.search(r'\*\*๐ฌ Response:\*\*\s*\n\n([\s\S]*)', response_text)
if response_match:
return response_match.group(1).strip()
# Fallback: extract after "assistantfinal"
final_match = re.search(r'assistantfinal\s*([\s\S]*)', response_text)
if final_match:
return final_match.group(1).strip()
return response_text
except Exception as e:
print(f"Failed to generate text: {e}")
raise Exception(f"Text generation failed: {str(e)}")
@staticmethod
def generate_piclet_concept(caption: str, hf_token: str) -> dict:
"""
Generate complete Piclet concept from image caption
Returns parsed concept with object name, variation, stats, etc.
"""
concept_prompt = f"""You are analyzing an image to create a Pokรฉmon-style creature. Here's the image description:
"{caption}"
STEP 1 - REASONING (think through these before writing):
1. What is the PRIMARY PHYSICAL OBJECT? Be SPECIFIC (e.g., "f-16 fighting falcon" not "jet", "macbook pro" not "laptop")
2. What is this object's real-world PURPOSE and FUNCTION?
3. What PERSONALITY traits would naturally emerge from this object's characteristics?
- If it's fast โ energetic, agile
- If it's protective โ loyal, defensive
- If it's precise โ disciplined, focused
4. What NATURAL HABITAT suits this object-turned-creature?
- Electronics โ urban/tech environments
- Vehicles โ roads, skies, waters they traverse
- Tools โ workshops, sites where they're used
5. What BEHAVIORS and ABILITIES reflect the object's function?
- What does the object DO in real life?
- How would those actions become creature abilities?
6. What are the object's most ICONIC VISUAL FEATURES that define it?
STEP 2 - FORMAT your complete concept EXACTLY as follows:
```md
# Canonical Object
{{Specific object name: "macbook", "eiffel tower", "iphone", "tesla", "le creuset mug", "nintendo switch"}}
{{NOT generic terms like: "laptop", "tower", "phone", "car", "mug", "console"}}
{{Include brand/model/landmark name when identifiable}}
# Variation
{{OPTIONAL: one distinctive attribute like "silver", "pro", "night", "gaming", OR use "canonical" if this is the standard/default version with no special variation}}
# Object Rarity
{{common, uncommon, rare, epic, or legendary based on object uniqueness}}
# Monster Name
{{Creative 8-11 letter name based on the SPECIFIC object, e.g., "Macbyte" for MacBook, "Towerfell" for Eiffel Tower}}
# Primary Type
{{beast, bug, aquatic, flora, mineral, space, machina, structure, culture, or cuisine}}
# Physical Stats
Height: {{e.g., "1.2m" or "3'5\\""}}
Weight: {{e.g., "15kg" or "33 lbs"}}
# Personality
{{1-2 sentences describing personality traits based on the object's real-world function and characteristics}}
# Physical Appearance
{{2-3 paragraphs describing how the SPECIFIC object's visual features translate into monster features. Reference the actual object by name. Describe body structure, colors, textures, materials, distinctive markings, and how each physical element relates to the source object.}}
# Lore & Behavior
{{2-3 paragraphs describing the creature's behavior, habitat, abilities, and role in its ecosystem. What does it DO? Where does it live? How does it interact with its environment? What are its natural behaviors and powers that reflect the object's real-world function? This is the creature's background story and behavioral profile.}}
# Monster Image Prompt
{{Detailed 3-4 sentence visual description for anime-style image generation. Describe body structure, colors, textures, materials, distinctive features, personality-driven pose/expression, dynamic action or stance, environment/background setting, and atmospheric lighting. Be specific and detailed about visual elements. DO NOT mention the source object name or include phrases like "Inspired by [object]".}}
```
CRITICAL RULES:
- Canonical Object MUST be SPECIFIC: "f-16 fighting falcon" not "jet", "macbook pro" not "laptop", "coca cola" not "soda"
- If you can identify a brand, model, or proper name from the description, USE IT
- Variation should be meaningful and distinctive (material, style, color, context, or model variant)
- Physical Appearance must describe the CREATURE'S BODY with references to the specific object's visual features
- Lore & Behavior must describe WHAT THE CREATURE DOES, not how it looks
- Monster Image Prompt must be a detailed (3-4 sentences) pure visual description without mentioning the source object name
- Monster Image Prompt must NOT include the monster's name or style prefixes like "Anime-style" or "Pokรฉmon-style"
- Primary Type must match the object category (machina for electronics/vehicles, structure for buildings, etc.)"""
response_text = PicletGeneratorService.generate_text_with_gpt(concept_prompt, hf_token)
# Parse the concept
return PicletGeneratorService.parse_concept(response_text)
@staticmethod
def parse_concept(concept_text: str) -> dict:
"""Parse structured concept text into dict"""
# Remove code block markers if present
if '```' in concept_text:
code_block_match = re.search(r'```(?:md|markdown)?\s*\n([\s\S]*?)```', concept_text)
if code_block_match:
concept_text = code_block_match.group(1).strip()
def extract_section(text: str, section: str) -> str:
"""Extract content of a markdown section"""
pattern = rf'\*{{0,2}}#\s*{re.escape(section)}\s*\*{{0,2}}\s*\n([\s\S]*?)(?=^\*{{0,2}}#|$)'
match = re.search(pattern, text, re.MULTILINE)
if match:
content = match.group(1).strip()
# Remove curly braces and quotes that GPT sometimes adds
content = re.sub(r'^[{"]|["}]$', '', content)
content = re.sub(r'^.*:\s*["\']|["\']$', '', content)
return content.strip()
return ''
# Extract all sections
object_name = extract_section(concept_text, 'Canonical Object').lower()
variation_text = extract_section(concept_text, 'Variation')
rarity_text = extract_section(concept_text, 'Object Rarity').lower()
monster_name = extract_section(concept_text, 'Monster Name')
primary_type = extract_section(concept_text, 'Primary Type').lower()
# Extract both appearance and lore sections separately (keep them separate!)
physical_appearance = extract_section(concept_text, 'Physical Appearance')
lore_behavior = extract_section(concept_text, 'Lore & Behavior')
image_prompt = extract_section(concept_text, 'Monster Image Prompt')
# Parse physical stats
physical_stats_text = extract_section(concept_text, 'Physical Stats')
height_match = re.search(r'Height:\s*(.+)', physical_stats_text, re.IGNORECASE)
weight_match = re.search(r'Weight:\s*(.+)', physical_stats_text, re.IGNORECASE)
height = height_match.group(1).strip() if height_match else None
weight = weight_match.group(1).strip() if weight_match else None
personality = extract_section(concept_text, 'Personality')
# Clean monster name
if monster_name:
monster_name = re.sub(r'\*+', '', monster_name) # Remove asterisks
if ',' in monster_name:
monster_name = monster_name.split(',')[0]
if len(monster_name) > 12:
monster_name = monster_name[:12]
# Parse variation
attributes = []
if variation_text and variation_text.lower() not in ['none', 'canonical', '']:
attributes = [variation_text.lower()]
# Map rarity to tier
tier = 'medium'
if 'common' in rarity_text:
tier = 'low'
elif 'uncommon' in rarity_text:
tier = 'medium'
elif 'rare' in rarity_text and 'epic' not in rarity_text:
tier = 'high'
elif 'legendary' in rarity_text or 'epic' in rarity_text or 'mythical' in rarity_text:
tier = 'legendary'
return {
'objectName': object_name,
'attributes': attributes,
'concept': concept_text,
'stats': {
'name': monster_name or 'Unknown',
'physicalAppearance': physical_appearance,
'lore': lore_behavior,
'tier': tier,
'primaryType': primary_type or 'beast',
'height': height,
'weight': weight,
'personality': personality
},
'imagePrompt': image_prompt
}
@staticmethod
def generate_piclet_image(image_prompt: str, tier: str, hf_token: str) -> dict:
"""Generate Piclet image using Qwen-Image-Fast"""
try:
print(f"Connecting to Qwen-Image-Fast space...")
client = Client(
PicletGeneratorService.QWEN_IMAGE_SPACE,
hf_token=hf_token
)
# Build enhanced prompt for Pokemon-style anime art
full_prompt = f"{image_prompt} Pokรฉmon anime art style, idle pose, centered, full body visible in frame."
print(f"Generating image with Qwen-Image-Fast...")
print(f"Prompt: {full_prompt[:100]}...")
# Qwen-Image-Fast API: infer(prompt, seed, randomize_seed, aspect_ratio, guidance_scale, num_inference_steps, prompt_enhance)
result = client.predict(
full_prompt, # prompt
0, # seed (will be randomized)
True, # randomize_seed
"3:4", # aspect_ratio (768x1024 - portrait)
1.0, # guidance_scale (default)
8, # num_inference_steps (default, optimized with Lightning LoRA)
True, # prompt_enhance (uses LLM to enhance prompt)
api_name="/infer"
)
# Qwen returns: (PIL.Image, seed) tuple
result_data = result.data if hasattr(result, 'data') else result
image_data = result_data[0] if isinstance(result_data, (list, tuple)) else result_data
seed = result_data[1] if isinstance(result_data, (list, tuple)) and len(result_data) > 1 else 0
# Handle different return formats (URL or PIL Image object)
image_url = None
if isinstance(image_data, str):
image_url = image_data
elif isinstance(image_data, dict):
image_url = image_data.get('url') or image_data.get('path')
elif hasattr(image_data, 'url'):
image_url = image_data.url
if not image_url:
raise Exception("Failed to extract image URL from Qwen response")
return {
'imageUrl': image_url,
'seed': seed,
'prompt': image_prompt
}
except Exception as e:
print(f"Failed to generate image: {e}")
raise Exception(f"Image generation failed: {str(e)}")
@staticmethod
def upload_image_to_dataset(image_path: str, file_name: str) -> str:
"""
Upload image to HuggingFace dataset
Args:
image_path: Local path to the image file (or URL to download from)
file_name: Name for the file (e.g., "pillow_canonical.png")
Returns:
URL to the uploaded image in the dataset
"""
try:
print(f"Uploading image to dataset: {file_name}")
# Handle both local paths and URLs
if image_path.startswith('http'):
# Download from URL first
import requests
response = requests.get(image_path)
with tempfile.NamedTemporaryFile(mode='wb', suffix='.png', delete=False) as f:
f.write(response.content)
temp_path = f.name
else:
# Use local path directly
temp_path = image_path
# Upload to HuggingFace dataset
file_path = f"images/{file_name}"
api.upload_file(
path_or_fileobj=temp_path,
path_in_repo=file_path,
repo_id=DATASET_REPO,
repo_type=DATASET_TYPE,
commit_message=f"Add piclet image: {file_name}"
)
# Clean up temp file if we downloaded it
if image_path.startswith('http'):
os.unlink(temp_path)
# Return the dataset URL
dataset_url = f"https://huggingface.co/datasets/{DATASET_REPO}/resolve/main/{file_path}"
print(f"Image uploaded successfully: {dataset_url}")
return dataset_url
except Exception as e:
print(f"Failed to upload image: {e}")
raise Exception(f"Image upload failed: {str(e)}")
# API Endpoints
def search_piclet(object_name: str, attributes: List[str]) -> dict:
"""
Search for canonical Piclet or variations
Returns matching piclet or None
"""
piclet_data = PicletDiscoveryService.load_piclet_data(object_name)
if not piclet_data:
return {
"status": "new",
"message": f"No Piclet found for '{object_name}'",
"piclet": None
}
# Check if searching for canonical (no attributes)
if not attributes or len(attributes) == 0:
return {
"status": "existing",
"message": f"Found canonical Piclet for '{object_name}'",
"piclet": piclet_data.get("canonical")
}
# Search for matching variation
variations = piclet_data.get("variations", [])
for variation in variations:
var_attrs = set(variation.get("attributes", []))
search_attrs = set(attributes)
# Check for close match (at least 50% overlap)
overlap = len(var_attrs.intersection(search_attrs))
if overlap >= len(search_attrs) * 0.5:
return {
"status": "variation",
"message": f"Found variation of '{object_name}'",
"piclet": variation,
"canonicalId": piclet_data["canonical"]["typeId"]
}
# No variation found, suggest creating one
return {
"status": "new_variation",
"message": f"No variation found for '{object_name}' with attributes {attributes}",
"canonicalId": piclet_data["canonical"]["typeId"],
"piclet": None
}
def create_canonical(object_name: str, piclet_data: str, token_or_username: str) -> dict:
"""
Create a new canonical Piclet
Args:
object_name: The normalized object name (e.g., "pillow")
piclet_data: JSON string of Piclet instance data
token_or_username: Either OAuth token (starts with "hf_") or username for testing
Returns:
Dict with success status and piclet data
"""
try:
piclet_json = json.loads(piclet_data) if isinstance(piclet_data, str) else piclet_data
# Determine if this is a token or username
user_info = None
if token_or_username and token_or_username.startswith('hf_'):
# OAuth token - verify it
user_info = verify_hf_token(token_or_username)
if not user_info:
return {
"success": False,
"error": "Invalid OAuth token"
}
else:
# Legacy username mode (for testing)
user_info = {
"sub": f"legacy_{token_or_username}",
"preferred_username": token_or_username,
"name": token_or_username,
"picture": None
}
# Get or create user profile
user_profile = PicletDiscoveryService.get_or_create_user_profile(user_info)
# Create canonical entry with full discoverer info
canonical_data = {
"canonical": {
"objectName": object_name,
"typeId": f"{PicletDiscoveryService.normalize_object_name(object_name)}_canonical",
"discoveredBy": user_info['preferred_username'],
"discovererSub": user_info['sub'],
"discovererUsername": user_info['preferred_username'],
"discovererName": user_info.get('name'),
"discovererPicture": user_info.get('picture'),
"discoveredAt": datetime.now().isoformat(),
"scanCount": 1,
"picletData": piclet_json
},
"variations": []
}
# Save to dataset
if PicletDiscoveryService.save_piclet_data(object_name, canonical_data):
# Update user profile
user_profile["discoveries"].append(canonical_data["canonical"]["typeId"])
user_profile["uniqueFinds"] += 1
user_profile["totalFinds"] += 1
user_profile["rarityScore"] += 100 # Bonus for canonical discovery
PicletDiscoveryService.save_user_data(user_info['sub'], user_profile)
return {
"success": True,
"message": f"Created canonical Piclet for '{object_name}'",
"piclet": canonical_data["canonical"]
}
else:
return {
"success": False,
"error": "Failed to save canonical Piclet"
}
except Exception as e:
return {
"success": False,
"error": str(e)
}
def create_variation(canonical_id: str, attributes: List[str], piclet_data: str, token_or_username: str, object_name: str) -> dict:
"""
Create a variation of an existing canonical Piclet with OAuth verification
Args:
canonical_id: ID of the canonical Piclet
attributes: List of variation attributes
piclet_data: JSON data for the Piclet
token_or_username: Either OAuth token (starts with "hf_") or username for testing
object_name: Normalized object name
Returns:
Success/error dict with variation data
"""
try:
piclet_json = json.loads(piclet_data) if isinstance(piclet_data, str) else piclet_data
# Verify token or use legacy mode
user_info = None
if token_or_username and token_or_username.startswith('hf_'):
user_info = verify_hf_token(token_or_username)
if not user_info:
return {"success": False, "error": "Invalid OAuth token"}
else:
# Legacy mode for testing
user_info = {
"sub": f"legacy_{token_or_username}",
"preferred_username": token_or_username,
"name": token_or_username,
"picture": None
}
# Get or create user profile
user_profile = PicletDiscoveryService.get_or_create_user_profile(user_info)
# Load existing data
existing_data = PicletDiscoveryService.load_piclet_data(object_name)
if not existing_data:
return {
"success": False,
"error": f"Canonical Piclet not found for '{object_name}'"
}
# Create variation entry
variation_id = f"{PicletDiscoveryService.normalize_object_name(object_name)}_{len(existing_data['variations']) + 1:03d}"
variation = {
"typeId": variation_id,
"attributes": attributes,
"discoveredBy": user_info['preferred_username'],
"discovererSub": user_info['sub'],
"discovererUsername": user_info['preferred_username'],
"discovererName": user_info.get('name'),
"discovererPicture": user_info.get('picture'),
"discoveredAt": datetime.now().isoformat(),
"scanCount": 1,
"picletData": piclet_json
}
# Add to variations
existing_data["variations"].append(variation)
# Save updated data
if PicletDiscoveryService.save_piclet_data(object_name, existing_data):
# Update user profile
user_profile["discoveries"].append(variation_id)
user_profile["totalFinds"] += 1
user_profile["rarityScore"] += 50 # Bonus for variation discovery
PicletDiscoveryService.save_user_data(user_info['sub'], user_profile)
return {
"success": True,
"message": f"Created variation of '{object_name}'",
"piclet": variation
}
else:
return {
"success": False,
"error": "Failed to save variation"
}
except Exception as e:
return {
"success": False,
"error": str(e)
}
def increment_scan_count(piclet_id: str, object_name: str) -> dict:
"""
Increment the scan count for a Piclet
"""
try:
data = PicletDiscoveryService.load_piclet_data(object_name)
if not data:
return {
"success": False,
"error": "Piclet not found"
}
# Check canonical
if data["canonical"]["typeId"] == piclet_id:
data["canonical"]["scanCount"] = data["canonical"].get("scanCount", 0) + 1
scan_count = data["canonical"]["scanCount"]
else:
# Check variations
for variation in data["variations"]:
if variation["typeId"] == piclet_id:
variation["scanCount"] = variation.get("scanCount", 0) + 1
scan_count = variation["scanCount"]
break
else:
return {
"success": False,
"error": "Piclet ID not found"
}
# Save updated data
if PicletDiscoveryService.save_piclet_data(object_name, data):
return {
"success": True,
"scanCount": scan_count
}
else:
return {
"success": False,
"error": "Failed to update scan count"
}
except Exception as e:
return {
"success": False,
"error": str(e)
}
def generate_piclet(image, hf_token: str) -> dict:
"""
Complete Piclet generation workflow - single endpoint
Takes user's image and hf_token, returns generated Piclet with discovery status
Args:
image: Uploaded image file (Gradio file input)
hf_token: User's HuggingFace OAuth token
Returns:
{
"success": bool,
"piclet": {complete piclet data},
"discoveryStatus": "new" | "variation" | "existing",
"canonicalId": str (if variation/existing),
"message": str
}
"""
try:
# Validate token and get user info
user_info = verify_hf_token(hf_token)
if not user_info:
return {
"success": False,
"error": "Invalid HuggingFace token"
}
print(f"Generating Piclet for user: {user_info.get('preferred_username', 'unknown')}")
# Get user profile (creates if doesn't exist)
user_profile = PicletDiscoveryService.get_or_create_user_profile(user_info)
# Get image path from Gradio (type="filepath" gives us a string path)
image_path = image if isinstance(image, str) else str(image)
# Step 1: Generate caption
print("Step 1/5: Generating image caption...")
caption = PicletGeneratorService.generate_enhanced_caption(image_path, hf_token)
# Step 2: Generate concept
print("Step 2/5: Generating Piclet concept...")
concept_data = PicletGeneratorService.generate_piclet_concept(caption, hf_token)
object_name = concept_data['objectName']
attributes = concept_data['attributes']
stats = concept_data['stats']
image_prompt = concept_data['imagePrompt']
concept_text = concept_data['concept']
# Step 3: Generate image
print("Step 3/5: Generating Piclet image...")
image_result = PicletGeneratorService.generate_piclet_image(
image_prompt,
stats['tier'],
hf_token
)
# Step 4: Check for canonical/variation
print("Step 4/5: Checking for existing canonical...")
existing_data = PicletDiscoveryService.load_piclet_data(object_name)
discovery_status = 'new'
canonical_id = None
scan_count = 1
if existing_data:
# Check if this is an exact canonical match (no attributes)
if not attributes or len(attributes) == 0:
discovery_status = 'existing'
canonical_id = existing_data['canonical']['typeId']
# Increment scan count
existing_data['canonical']['scanCount'] = existing_data['canonical'].get('scanCount', 0) + 1
scan_count = existing_data['canonical']['scanCount']
PicletDiscoveryService.save_piclet_data(object_name, existing_data)
else:
# Check for matching variation
variations = existing_data.get('variations', [])
matched_variation = None
for variation in variations:
var_attrs = set(variation.get('attributes', []))
search_attrs = set(attributes)
overlap = len(var_attrs.intersection(search_attrs))
if overlap >= len(search_attrs) * 0.5:
matched_variation = variation
discovery_status = 'existing'
canonical_id = existing_data['canonical']['typeId']
# Increment variation scan count
variation['scanCount'] = variation.get('scanCount', 0) + 1
scan_count = variation['scanCount']
PicletDiscoveryService.save_piclet_data(object_name, existing_data)
break
if not matched_variation:
discovery_status = 'variation'
canonical_id = existing_data['canonical']['typeId']
# Step 5: Save new discovery if needed
print("Step 5/5: Saving to dataset...")
if discovery_status == 'new':
# Create new canonical
type_id = f"{PicletDiscoveryService.normalize_object_name(object_name)}_canonical"
# Upload image to dataset with canonical filename
normalized_name = PicletDiscoveryService.normalize_object_name(object_name)
image_filename = f"{normalized_name}_canonical.png"
dataset_image_url = PicletGeneratorService.upload_image_to_dataset(
image_result['imageUrl'],
image_filename
)
canonical_data = {
"canonical": {
"objectName": object_name,
"typeId": type_id,
"discoveredBy": user_info['preferred_username'],
"discovererSub": user_info['sub'],
"discovererUsername": user_info['preferred_username'],
"discovererName": user_info.get('name'),
"discovererPicture": user_info.get('picture'),
"discoveredAt": datetime.now().isoformat(),
"scanCount": scan_count,
"picletData": {
"typeId": type_id,
"nickname": stats['name'],
"stats": stats,
"imageUrl": dataset_image_url,
"imageCaption": caption,
"concept": concept_text,
"imagePrompt": image_prompt,
"createdAt": datetime.now().isoformat()
}
},
"variations": []
}
canonical_id = type_id
PicletDiscoveryService.save_piclet_data(object_name, canonical_data)
# Update user profile
user_profile["discoveries"].append(type_id)
user_profile["uniqueFinds"] = user_profile.get("uniqueFinds", 0) + 1
user_profile["totalFinds"] = user_profile.get("totalFinds", 0) + 1
user_profile["rarityScore"] = user_profile.get("rarityScore", 0) + 100
PicletDiscoveryService.save_user_data(user_info['sub'], user_profile)
elif discovery_status == 'variation':
# Create new variation
existing_data = PicletDiscoveryService.load_piclet_data(object_name)
variation_num = len(existing_data['variations']) + 1
normalized_name = PicletDiscoveryService.normalize_object_name(object_name)
variation_id = f"{normalized_name}_{variation_num:03d}"
# Upload image to dataset with variation filename
image_filename = f"{normalized_name}_{variation_num:03d}.png"
dataset_image_url = PicletGeneratorService.upload_image_to_dataset(
image_result['imageUrl'],
image_filename
)
variation_data = {
"typeId": variation_id,
"attributes": attributes,
"discoveredBy": user_info['preferred_username'],
"discovererSub": user_info['sub'],
"discovererUsername": user_info['preferred_username'],
"discovererName": user_info.get('name'),
"discovererPicture": user_info.get('picture'),
"discoveredAt": datetime.now().isoformat(),
"scanCount": scan_count,
"picletData": {
"typeId": variation_id,
"nickname": stats['name'],
"stats": stats,
"imageUrl": dataset_image_url,
"imageCaption": caption,
"concept": concept_text,
"imagePrompt": image_prompt,
"createdAt": datetime.now().isoformat()
}
}
existing_data['variations'].append(variation_data)
PicletDiscoveryService.save_piclet_data(object_name, existing_data)
# Update user profile
user_profile["discoveries"].append(variation_id)
user_profile["totalFinds"] = user_profile.get("totalFinds", 0) + 1
user_profile["rarityScore"] = user_profile.get("rarityScore", 0) + 50
PicletDiscoveryService.save_user_data(user_info['sub'], user_profile)
# Build complete response
# For existing piclets, get the stored data; for new/variation, use generated data
if discovery_status == 'existing':
# Load the existing piclet data to return
existing_piclet_data = PicletDiscoveryService.load_piclet_data(object_name)
if existing_piclet_data and existing_piclet_data.get('canonical'):
existing_canonical = existing_piclet_data['canonical']
piclet_data = existing_canonical.get('picletData', {})
piclet_data['discoveryStatus'] = discovery_status
piclet_data['scanCount'] = existing_canonical.get('scanCount', 1)
else:
# Fallback if data not found
piclet_data = {
"typeId": canonical_id,
"nickname": stats['name'],
"stats": stats,
"imageUrl": image_result.get('imageUrl', ''),
"imageCaption": caption,
"concept": concept_text,
"imagePrompt": image_prompt,
"objectName": object_name,
"attributes": attributes,
"discoveryStatus": discovery_status,
"scanCount": scan_count,
"createdAt": datetime.now().isoformat()
}
else:
# For new and variation, determine the correct dataset URL
if discovery_status == 'new':
normalized_name = PicletDiscoveryService.normalize_object_name(object_name)
image_filename = f"{normalized_name}_canonical.png"
else: # variation
normalized_name = PicletDiscoveryService.normalize_object_name(object_name)
existing_data = PicletDiscoveryService.load_piclet_data(object_name)
variation_num = len(existing_data.get('variations', []))
image_filename = f"{normalized_name}_{variation_num:03d}.png"
dataset_image_url = f"https://huggingface.co/datasets/{DATASET_REPO}/resolve/main/images/{image_filename}"
piclet_data = {
"typeId": canonical_id,
"nickname": stats['name'],
"stats": stats,
"imageUrl": dataset_image_url,
"imageCaption": caption,
"concept": concept_text,
"imagePrompt": image_prompt,
"objectName": object_name,
"attributes": attributes,
"discoveryStatus": discovery_status,
"scanCount": scan_count,
"createdAt": datetime.now().isoformat()
}
messages = {
'new': f"Congratulations! You discovered the first {object_name} Piclet!",
'variation': f"You found a new variation of {object_name}!",
'existing': f"You encountered a known {object_name} Piclet."
}
return {
"success": True,
"piclet": piclet_data,
"discoveryStatus": discovery_status,
"canonicalId": canonical_id,
"message": messages.get(discovery_status, "Piclet generated!")
}
except Exception as e:
print(f"Failed to generate Piclet: {e}")
import traceback
traceback.print_exc()
return {
"success": False,
"error": str(e)
}
def get_object_details(object_name: str) -> dict:
"""
Get complete details for an object (canonical + all variations)
Args:
object_name: The object name (e.g., "pillow", "macbook")
Returns:
{
"success": bool,
"objectName": str,
"canonical": {canonical data},
"variations": [list of variations],
"totalScans": int
}
"""
try:
# Load the object data
piclet_data = PicletDiscoveryService.load_piclet_data(object_name)
if not piclet_data:
return {
"success": False,
"error": f"No piclet found for object '{object_name}'",
"objectName": object_name
}
# Calculate total scans across canonical and variations
total_scans = piclet_data['canonical'].get('scanCount', 0)
for variation in piclet_data.get('variations', []):
total_scans += variation.get('scanCount', 0)
return {
"success": True,
"objectName": object_name,
"canonical": piclet_data['canonical'],
"variations": piclet_data.get('variations', []),
"totalScans": total_scans,
"variationCount": len(piclet_data.get('variations', []))
}
except Exception as e:
print(f"Failed to get object details: {e}")
return {
"success": False,
"error": str(e),
"objectName": object_name
}
def get_user_piclets(hf_token: str) -> dict:
"""
Get all Piclets discovered by a specific user
Args:
hf_token: User's HuggingFace OAuth token
Returns:
{
"success": bool,
"piclets": [list of piclet discoveries],
"stats": {user stats}
}
"""
try:
# Verify token and get user info
user_info = verify_hf_token(hf_token)
if not user_info:
return {
"success": False,
"error": "Invalid HuggingFace token",
"piclets": []
}
# Load user profile
user_profile = PicletDiscoveryService.load_user_data(user_info['sub'])
# Get list of discoveries
discoveries = user_profile.get('discoveries', [])
piclets = []
# Load each discovered piclet
for type_id in discoveries:
# Extract object name from type_id (e.g., "pillow_canonical" -> "pillow")
object_name = type_id.rsplit('_', 1)[0]
# Load the piclet data
piclet_data = PicletDiscoveryService.load_piclet_data(object_name)
if piclet_data:
# Check if it's canonical or variation
if piclet_data['canonical']['typeId'] == type_id:
piclets.append({
'type': 'canonical',
'typeId': type_id,
'objectName': object_name,
'discoveredAt': piclet_data['canonical']['discoveredAt'],
'scanCount': piclet_data['canonical'].get('scanCount', 1),
'picletData': piclet_data['canonical'].get('picletData', {})
})
else:
# Find matching variation
for variation in piclet_data.get('variations', []):
if variation['typeId'] == type_id:
piclets.append({
'type': 'variation',
'typeId': type_id,
'objectName': object_name,
'attributes': variation.get('attributes', []),
'discoveredAt': variation['discoveredAt'],
'scanCount': variation.get('scanCount', 1),
'picletData': variation.get('picletData', {})
})
break
# Sort by discovery date (most recent first)
piclets.sort(key=lambda x: x.get('discoveredAt', ''), reverse=True)
return {
"success": True,
"piclets": piclets,
"stats": {
"username": user_info.get('preferred_username'),
"name": user_info.get('name'),
"picture": user_info.get('picture'),
"totalFinds": user_profile.get('totalFinds', 0),
"uniqueFinds": user_profile.get('uniqueFinds', 0),
"rarityScore": user_profile.get('rarityScore', 0),
"joinedAt": user_profile.get('joinedAt')
}
}
except Exception as e:
print(f"Failed to get user piclets: {e}")
return {
"success": False,
"error": str(e),
"piclets": []
}
def get_recent_activity(limit: int = 20) -> dict:
"""
Get recent discoveries across all users
"""
try:
activities = []
# List all piclet files
try:
files = list_repo_files(
repo_id=DATASET_REPO,
repo_type=DATASET_TYPE,
token=HF_TOKEN
)
piclet_files = [f for f in files if f.startswith("piclets/") and f.endswith(".json")]
except:
piclet_files = []
# Load recent piclets (simplified - in production, maintain a separate activity log)
for file_path in piclet_files[-limit:]:
try:
object_name = file_path.replace("piclets/", "").replace(".json", "")
data = PicletDiscoveryService.load_piclet_data(object_name)
if data:
# Add canonical discovery
canonical = data["canonical"]
activities.append({
"type": "discovery",
"objectName": object_name,
"typeId": canonical["typeId"],
"discoveredBy": canonical["discoveredBy"],
"discoveredAt": canonical["discoveredAt"],
"scanCount": canonical.get("scanCount", 1)
})
# Add recent variations
for variation in data.get("variations", [])[-5:]:
activities.append({
"type": "variation",
"objectName": object_name,
"typeId": variation["typeId"],
"attributes": variation["attributes"],
"discoveredBy": variation["discoveredBy"],
"discoveredAt": variation["discoveredAt"],
"scanCount": variation.get("scanCount", 1)
})
except:
continue
# Sort by discovery date
activities.sort(key=lambda x: x.get("discoveredAt", ""), reverse=True)
return {
"success": True,
"activities": activities[:limit]
}
except Exception as e:
return {
"success": False,
"error": str(e),
"activities": []
}
def get_leaderboard(limit: int = 10) -> dict:
"""
Get top discoverers
"""
try:
leaderboard = []
# List all user files
try:
files = list_repo_files(
repo_id=DATASET_REPO,
repo_type=DATASET_TYPE,
token=HF_TOKEN
)
user_files = [f for f in files if f.startswith("users/") and f.endswith(".json")]
except:
user_files = []
# Load user data
for file_path in user_files:
try:
username = file_path.replace("users/", "").replace(".json", "")
user_data = PicletDiscoveryService.load_user_data(username)
leaderboard.append({
"username": username,
"totalFinds": user_data.get("totalFinds", 0),
"uniqueFinds": user_data.get("uniqueFinds", 0),
"rarityScore": user_data.get("rarityScore", 0)
})
except:
continue
# Sort by rarity score
leaderboard.sort(key=lambda x: x["rarityScore"], reverse=True)
# Add ranks
for i, entry in enumerate(leaderboard[:limit]):
entry["rank"] = i + 1
return {
"success": True,
"leaderboard": leaderboard[:limit]
}
except Exception as e:
return {
"success": False,
"error": str(e),
"leaderboard": []
}
# Create Gradio interface
with gr.Blocks(title="Piclets Discovery Server") as app:
gr.Markdown("""
# ๐ Piclets Discovery Server
Backend service for the Piclets discovery game. Each real-world object has ONE canonical Piclet!
""")
with gr.Tab("Generate Piclet"):
gr.Markdown("""
## ๐ฎ Complete Piclet Generator
Upload an image and provide your HuggingFace token to generate a complete Piclet.
This endpoint handles the entire workflow: captioning, concept generation, image creation, and dataset storage.
""")
with gr.Row():
with gr.Column():
gen_image = gr.Image(label="Upload Image", type="filepath")
gen_token = gr.Textbox(label="HuggingFace Token", placeholder="hf_...", type="password")
gen_btn = gr.Button("Generate Piclet", variant="primary")
with gr.Column():
gen_result = gr.JSON(label="Generated Piclet Result")
gen_btn.click(
fn=generate_piclet,
inputs=[gen_image, gen_token],
outputs=gen_result
)
with gr.Tab("My Piclets"):
gr.Markdown("""
## ๐ Your Discovery Collection
View all Piclets you've discovered (includes your stats).
""")
with gr.Row():
with gr.Column():
my_token = gr.Textbox(label="HuggingFace Token", placeholder="hf_...", type="password")
my_btn = gr.Button("Get My Piclets", variant="primary")
with gr.Column():
my_result = gr.JSON(label="My Piclets")
my_btn.click(
fn=get_user_piclets,
inputs=my_token,
outputs=my_result
)
with gr.Tab("Object Details"):
gr.Markdown("""
## ๐ View Object Details
Get complete information about an object (canonical + all variations).
""")
with gr.Row():
with gr.Column():
obj_name = gr.Textbox(label="Object Name", placeholder="e.g., pillow, macbook")
obj_btn = gr.Button("Get Details", variant="primary")
with gr.Column():
obj_result = gr.JSON(label="Object Details")
obj_btn.click(
fn=get_object_details,
inputs=obj_name,
outputs=obj_result
)
with gr.Tab("Recent Activity"):
activity_limit = gr.Slider(5, 50, value=20, label="Number of Activities")
activity_btn = gr.Button("Get Recent Activity")
activity_result = gr.JSON(label="Recent Discoveries")
activity_btn.click(
fn=get_recent_activity,
inputs=activity_limit,
outputs=activity_result
)
with gr.Tab("Leaderboard"):
leader_limit = gr.Slider(5, 20, value=10, label="Top N Discoverers")
leader_btn = gr.Button("Get Leaderboard")
leader_result = gr.JSON(label="Top Discoverers")
leader_btn.click(
fn=get_leaderboard,
inputs=leader_limit,
outputs=leader_result
)
# API Documentation
gr.Markdown("""
## ๐ Public API Endpoints
All endpoints return JSON responses. The frontend only needs these 5 endpoints:
### 1. **generate_piclet** (Scanner)
Complete Piclet generation workflow.
- Input: `image` (File), `hf_token` (string)
- Output: Generated Piclet with discovery status
### 2. **get_user_piclets** (User Collection)
Get user's discovered Piclets and stats.
- Input: `hf_token` (string)
- Output: List of Piclets + user stats (total/unique finds, rarity score)
### 3. **get_object_details** (Object Data)
Get complete object info (canonical + all variations).
- Input: `object_name` (string)
- Output: Canonical + variations + total scans
### 4. **get_recent_activity** (Activity Feed)
Recent discoveries across all users.
- Input: `limit` (int, default 20)
- Output: Recent discoveries with timestamps
### 5. **get_leaderboard** (Top Users)
Top discoverers by rarity score.
- Input: `limit` (int, default 10)
- Output: Ranked users with stats
---
*Note: Internal helper functions (search_piclet, create_canonical, etc.) are used by generate_piclet but not exposed to frontend.*
""")
if __name__ == "__main__":
# Protect web UI with authentication while allowing API access
admin_password = os.getenv("ADMIN_PASSWORD", "changeme")
# Configure for HuggingFace Space environment
app.launch()
|