Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,75 +1,35 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
import gradio as gr
|
| 4 |
-
from
|
| 5 |
-
from peft import PeftModel, PeftConfig
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
lora_model_id = "Futuresony/gemma2-9b-lora-alpaca"
|
| 10 |
|
| 11 |
-
# Load
|
| 12 |
-
|
| 13 |
-
base_model_id,
|
| 14 |
-
device_map="cpu",
|
| 15 |
-
torch_dtype=torch.float32,
|
| 16 |
-
)
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
model = PeftModel.from_pretrained(base_model, lora_model_id)
|
| 23 |
-
model.eval()
|
| 24 |
-
|
| 25 |
-
# === Alpaca-style formatter ===
|
| 26 |
-
def format_alpaca_prompt(user_input, system_prompt, history):
|
| 27 |
-
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history])
|
| 28 |
-
prompt = f"""{system_prompt}
|
| 29 |
-
{history_str}
|
| 30 |
-
|
| 31 |
-
### Instruction:
|
| 32 |
-
{user_input}
|
| 33 |
|
| 34 |
### Response:"""
|
| 35 |
-
return prompt
|
| 36 |
-
|
| 37 |
-
# === Chat logic ===
|
| 38 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
| 39 |
-
prompt = format_alpaca_prompt(message, system_message, history)
|
| 40 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cpu")
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 50 |
-
)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
-
|
| 60 |
-
yield final_output
|
| 61 |
|
| 62 |
-
|
| 63 |
-
demo = gr.ChatInterface(
|
| 64 |
-
fn=respond,
|
| 65 |
-
additional_inputs=[
|
| 66 |
-
gr.Textbox(value="You are a friendly chatbot.", label="System message"),
|
| 67 |
-
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens"),
|
| 68 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 69 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.01, label="Top-p"),
|
| 70 |
-
],
|
| 71 |
-
title="Offline Gemma-2B Alpaca Chatbot (LoRA)",
|
| 72 |
-
)
|
| 73 |
|
| 74 |
-
if __name__ == "__main__":
|
| 75 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from llama_cpp import Llama
|
|
|
|
| 3 |
|
| 4 |
+
# Path to your GGUF model inside the space
|
| 5 |
+
MODEL_PATH = "your-model.gguf"
|
|
|
|
| 6 |
|
| 7 |
+
# Load model
|
| 8 |
+
llm = Llama(model_path=MODEL_PATH, n_ctx=2048, n_threads=4, verbose=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Function to format the prompt
|
| 11 |
+
def format_prompt(user_message):
|
| 12 |
+
return f"""### Instruction:
|
| 13 |
+
{user_message}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
### Response:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Chat handler
|
| 18 |
+
def respond(user_message, chat_history):
|
| 19 |
+
prompt = format_prompt(user_message)
|
| 20 |
+
output = llm(prompt, max_tokens=300, stop=["###"])
|
| 21 |
+
response = output["choices"][0]["text"].strip()
|
| 22 |
+
chat_history.append((user_message, response))
|
| 23 |
+
return "", chat_history
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Gradio UI
|
| 26 |
+
with gr.Blocks() as demo:
|
| 27 |
+
gr.Markdown("## 🤖 DStv AI Assistant (Offline - GGUF)")
|
| 28 |
+
chatbot = gr.Chatbot()
|
| 29 |
+
msg = gr.Textbox(placeholder="Ask your question...")
|
| 30 |
+
state = gr.State([])
|
| 31 |
|
| 32 |
+
msg.submit(respond, [msg, state], [msg, chatbot])
|
|
|
|
| 33 |
|
| 34 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
|
|
|
|
|