Spaces:
Runtime error
Runtime error
Delete lid.py(auto/audio)
Browse files- lid.py(auto/audio) +0 -69
lid.py(auto/audio)
DELETED
|
@@ -1,69 +0,0 @@
|
|
| 1 |
-
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
|
| 2 |
-
import torch
|
| 3 |
-
import librosa
|
| 4 |
-
import numpy as np
|
| 5 |
-
|
| 6 |
-
model_id = "facebook/mms-lid-1024"
|
| 7 |
-
|
| 8 |
-
processor = AutoFeatureExtractor.from_pretrained(model_id)
|
| 9 |
-
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
|
| 10 |
-
|
| 11 |
-
LID_SAMPLING_RATE = 16_000
|
| 12 |
-
LID_TOPK = 10
|
| 13 |
-
LID_THRESHOLD = 0.33
|
| 14 |
-
|
| 15 |
-
LID_LANGUAGES = {}
|
| 16 |
-
with open(f"data/lid/all_langs.tsv") as f:
|
| 17 |
-
for line in f:
|
| 18 |
-
iso, name = line.split(" ", 1)
|
| 19 |
-
LID_LANGUAGES[iso] = name
|
| 20 |
-
|
| 21 |
-
def detect_language(audio_data=None):
|
| 22 |
-
if not audio_data:
|
| 23 |
-
return "<<ERROR: Empty Audio Input>>"
|
| 24 |
-
|
| 25 |
-
if isinstance(audio_data, tuple):
|
| 26 |
-
# microphone
|
| 27 |
-
sr, audio_samples = audio_data
|
| 28 |
-
audio_samples = (audio_samples / 32768.0).astype(np.float32)
|
| 29 |
-
if sr != LID_SAMPLING_RATE:
|
| 30 |
-
audio_samples = librosa.resample(
|
| 31 |
-
audio_samples, orig_sr=sr, target_sr=LID_SAMPLING_RATE
|
| 32 |
-
)
|
| 33 |
-
else:
|
| 34 |
-
# file upload
|
| 35 |
-
isinstance(audio_data, str)
|
| 36 |
-
audio_samples = librosa.load(audio_data, sr=LID_SAMPLING_RATE, mono=True)[0]
|
| 37 |
-
|
| 38 |
-
inputs = processor(
|
| 39 |
-
audio_samples, sampling_rate=LID_SAMPLING_RATE, return_tensors="pt"
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
# set device
|
| 43 |
-
if torch.cuda.is_available():
|
| 44 |
-
device = torch.device("cuda")
|
| 45 |
-
elif (
|
| 46 |
-
hasattr(torch.backends, "mps")
|
| 47 |
-
and torch.backends.mps.is_available()
|
| 48 |
-
and torch.backends.mps.is_built()
|
| 49 |
-
):
|
| 50 |
-
device = torch.device("mps")
|
| 51 |
-
else:
|
| 52 |
-
device = torch.device("cpu")
|
| 53 |
-
|
| 54 |
-
model.to(device)
|
| 55 |
-
inputs = inputs.to(device)
|
| 56 |
-
|
| 57 |
-
with torch.no_grad():
|
| 58 |
-
logit = model(**inputs).logits
|
| 59 |
-
|
| 60 |
-
logit_lsm = torch.log_softmax(logit.squeeze(), dim=-1)
|
| 61 |
-
scores, indices = torch.topk(logit_lsm, 5, dim=-1)
|
| 62 |
-
scores, indices = torch.exp(scores).to("cpu").tolist(), indices.to("cpu").tolist()
|
| 63 |
-
iso2score = {model.config.id2label[int(i)]: s for s, i in zip(scores, indices)}
|
| 64 |
-
|
| 65 |
-
if max(iso2score.values()) < LID_THRESHOLD:
|
| 66 |
-
return "Low confidence in the language identification predictions. Output is not shown!"
|
| 67 |
-
|
| 68 |
-
return {LID_LANGUAGES[iso]: score for iso, score in iso2score.items()}
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|