Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,058 Bytes
cfb37bf fb3185e bb2fbb1 349175e c662fe8 2c99aea f094617 349175e c79571d fb3185e cfb37bf c79571d c662fe8 c79571d 490767e c79571d 490767e c662fe8 fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d bb2fbb1 2c99aea bb2fbb1 2c99aea bb2fbb1 2c99aea bb2fbb1 2c99aea bb2fbb1 fb3185e bb2fbb1 2c99aea bb2fbb1 2c99aea 0dfe1bf 2c99aea 0dfe1bf 2c99aea bb2fbb1 0dfe1bf bb2fbb1 349175e bb2fbb1 349175e bb2fbb1 fb3185e c79571d 349175e bb2fbb1 c79571d bb2fbb1 2c99aea c79571d 2c99aea 349175e 2c99aea bb2fbb1 2c99aea bb2fbb1 349175e 2c99aea bb2fbb1 466f0d3 0dfe1bf 349175e bb2fbb1 2c99aea 349175e bb2fbb1 c79571d 2c99aea bb2fbb1 349175e bb2fbb1 2c99aea 0dfe1bf 349175e 133333c c79571d 349175e bb2fbb1 c79571d 2c99aea c79571d 0dfe1bf 349175e 2c99aea bb2fbb1 2c99aea 349175e 2c99aea 0dfe1bf 349175e 0dfe1bf 349175e 2c99aea bb2fbb1 349175e bb2fbb1 c79571d 2c99aea 349175e bb2fbb1 c662fe8 bb2fbb1 349175e 2c99aea bb2fbb1 2c99aea 349175e 2c99aea 349175e bb2fbb1 0914acb 2c99aea 349175e 2c99aea bb2fbb1 349175e 2c99aea 349175e 2c99aea 349175e bb2fbb1 0914acb bb2fbb1 349175e bb2fbb1 349175e bb2fbb1 349175e bb2fbb1 0914acb bb2fbb1 0914acb bb2fbb1 0914acb bb2fbb1 0914acb 2c99aea bb2fbb1 2c99aea 349175e 2c99aea fb3185e 2c99aea 349175e 2c99aea 133333c fb3185e 349175e 0dfe1bf bb2fbb1 349175e bb2fbb1 c79571d 2c99aea bb2fbb1 c79571d 2c99aea c79571d 2c99aea c79571d bb2fbb1 0dfe1bf bb2fbb1 349175e 0914acb 0dfe1bf 349175e c662fe8 bb2fbb1 349175e bb2fbb1 c79571d 2c99aea bb2fbb1 c79571d 2c99aea c79571d 2c99aea c79571d 2c99aea c79571d 133333c 349175e 0914acb c6b50f6 349175e c6b50f6 bb2fbb1 349175e bb2fbb1 c6b50f6 349175e 0914acb fb3185e c6b50f6 349175e c6b50f6 bb2fbb1 349175e bb2fbb1 349175e bb2fbb1 349175e 2c99aea c6b50f6 fb3185e 349175e fb3185e 2c99aea bb2fbb1 2c99aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
import gradio as gr
import json
import tempfile
import os
import zipfile
import shutil
from typing import List, Optional, Literal, Union, Dict
from PIL import Image
import requests
from pathlib import Path
import spaces
from visualizer import htrflow_visualizer
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline
DEFAULT_OUTPUT = "alto"
FORMAT_CHOICES = [
"letter_english",
"letter_swedish",
"spread_english",
"spread_swedish",
]
FILE_CHOICES = ["txt", "alto", "page", "json"]
FormatChoices = Literal[
"letter_english", "letter_swedish", "spread_english", "spread_swedish"
]
FileChoices = Literal["txt", "alto", "page", "json"]
PIPELINE_CONFIGS = {
"letter_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"letter_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {
"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"spread_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
"spread_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {
"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
}
def handle_image_input(image_path: Union[str, None], progress: gr.Progress = None, desc_prefix: str = "") -> str:
"""
Handle image input from various sources (local file, URL, or uploaded file).
Args:
image_path: Path to image file or URL
progress: Progress tracker for UI updates
desc_prefix: Prefix for progress descriptions
Returns:
Local file path to the image
"""
if not image_path:
raise ValueError("No image provided. Please upload an image or provide a URL.")
if progress:
progress(0.1, desc=f"{desc_prefix}Processing image input...")
# If it's a URL, download the image
if isinstance(image_path, str) and (image_path.startswith("http://") or image_path.startswith("https://")):
try:
if progress:
progress(0.2, desc=f"{desc_prefix}Downloading image from URL...")
response = requests.get(image_path, timeout=30)
response.raise_for_status()
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
tmp_file.write(response.content)
image_path = tmp_file.name
# Verify it's a valid image
try:
img = Image.open(image_path)
img.verify()
except Exception as e:
os.unlink(image_path)
raise ValueError(f"Downloaded file is not a valid image: {str(e)}")
except requests.RequestException as e:
raise ValueError(f"Failed to download image from URL: {str(e)}")
# Verify the file exists
if not os.path.exists(image_path):
raise ValueError(f"Image file not found: {image_path}")
return image_path
def parse_image_input(image_input: Union[str, List[str], None]) -> List[str]:
"""
Parse image input which can be a single path, multiple paths, or URLs separated by newlines.
Args:
image_input: Single image path, list of paths, or newline-separated URLs/paths
Returns:
List of image paths/URLs
"""
if not image_input:
return []
if isinstance(image_input, list):
return image_input
if isinstance(image_input, str):
# Check if it's multiple URLs/paths separated by newlines
lines = image_input.strip().split('\n')
paths = []
for line in lines:
line = line.strip()
if line: # Skip empty lines
paths.append(line)
return paths if paths else [image_input]
return []
@spaces.GPU
def _process_htr_pipeline_batch(
image_paths: List[str],
document_type: FormatChoices,
custom_settings: Optional[str] = None,
progress: gr.Progress = None
) -> Dict[str, Collection]:
"""Process HTR pipeline for multiple images and return processed collections."""
results = {}
temp_files = []
total_images = len(image_paths)
if custom_settings:
try:
config = json.loads(custom_settings)
except json.JSONDecodeError:
raise ValueError("Invalid JSON in custom_settings parameter. Please check your JSON syntax.")
else:
config = PIPELINE_CONFIGS[document_type]
# Initialize pipeline once for all images
pipeline = Pipeline.from_config(config)
for idx, image_path in enumerate(image_paths):
try:
image_name = Path(image_path).stem if not image_path.startswith("http") else f"image_{idx+1}"
if progress:
progress((idx + 0.2) / total_images,
desc=f"Processing image {idx+1}/{total_images}: {image_name}")
# Handle image input
processed_path = handle_image_input(image_path, progress,
desc_prefix=f"[{idx+1}/{total_images}] ")
# Track temp files for cleanup
if processed_path.startswith(tempfile.gettempdir()):
temp_files.append(processed_path)
if progress:
progress((idx + 0.5) / total_images,
desc=f"Running HTR on image {idx+1}/{total_images}: {image_name}")
# Process with pipeline
collection = Collection([processed_path])
processed_collection = pipeline.run(collection)
results[image_name] = processed_collection
if progress:
progress((idx + 1.0) / total_images,
desc=f"Completed image {idx+1}/{total_images}: {image_name}")
except Exception as e:
results[image_name] = f"Error: {str(e)}"
print(f"Error processing {image_path}: {str(e)}")
# Cleanup temp files
for temp_file in temp_files:
try:
os.unlink(temp_file)
except:
pass
if progress:
progress(1.0, desc=f"Completed processing all {total_images} images!")
return results
def extract_text_from_collection(collection: Collection) -> str:
"""Extract and combine text from all nodes in the collection."""
text_lines = []
for page in collection.pages:
for node in page.traverse():
if hasattr(node, "text") and node.text:
text_lines.append(node.text)
return "\n".join(text_lines)
def htr_text(
image_input: Union[str, List[str]],
document_type: FormatChoices = "letter_swedish",
custom_settings: Optional[str] = None,
return_format: str = "separate", # "separate" or "combined"
progress: gr.Progress = gr.Progress()
) -> str:
"""
Extract text from handwritten documents using HTR.
Handles both single images and multiple images.
Args:
image_input: Single image path/URL, multiple paths/URLs (newline-separated), or list of uploaded files
document_type: Type of document layout - choose based on your documents' structure and language
custom_settings: Optional JSON configuration for advanced pipeline customization
return_format: "separate" to show each document's text separately, "combined" to merge all text
progress: Progress tracker for UI updates
Returns:
Extracted text from all handwritten documents
"""
try:
if progress:
progress(0, desc="Starting HTR text extraction...")
# Parse input to get list of images
image_paths = parse_image_input(image_input)
if not image_paths:
return "No images provided. Please upload images or provide URLs."
# Adjust description based on single vs multiple
num_images = len(image_paths)
desc = f"Processing {num_images} image{'s' if num_images > 1 else ''}..."
if progress:
progress(0.1, desc=desc)
# Process all images
results = _process_htr_pipeline_batch(
image_paths, document_type, custom_settings, progress
)
# Extract text from results
all_texts = []
for image_name, collection in results.items():
if isinstance(collection, str): # Error case
all_texts.append(f"=== {image_name} ===\n{collection}\n")
else:
text = extract_text_from_collection(collection)
if return_format == "separate":
all_texts.append(f"=== {image_name} ===\n{text}\n")
else:
all_texts.append(text)
# Return formatted result
if return_format == "separate":
return "\n".join(all_texts)
else:
return "\n\n".join(all_texts)
except ValueError as e:
return f"Input error: {str(e)}"
except Exception as e:
return f"HTR text extraction failed: {str(e)}"
def htr_generate_files(
image_input: Union[str, List[str]],
document_type: FormatChoices = "letter_swedish",
output_format: FileChoices = DEFAULT_OUTPUT,
custom_settings: Optional[str] = None,
progress: gr.Progress = gr.Progress()
) -> str:
"""
Process handwritten documents and generate formatted output files.
Returns a ZIP file for multiple documents, or single file for single document.
Args:
image_input: Single image path/URL, multiple paths/URLs (newline-separated), or list of uploaded files
document_type: Type of document layout - affects segmentation and reading order
output_format: Desired output format (txt for plain text, alto/page for XML with coordinates, json for structured data)
custom_settings: Optional JSON configuration for advanced pipeline customization
progress: Progress tracker for UI updates
Returns:
Path to generated file(s)
"""
try:
if progress:
progress(0, desc="Starting HTR file processing...")
# Parse input to get list of images
image_paths = parse_image_input(image_input)
if not image_paths:
error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
error_file.write("No images provided. Please upload images or provide URLs.")
error_file.close()
return error_file.name
num_images = len(image_paths)
if progress:
progress(0.1, desc=f"Processing {num_images} image{'s' if num_images > 1 else ''}...")
# Process all images
results = _process_htr_pipeline_batch(
image_paths, document_type, custom_settings, progress
)
if progress:
progress(0.9, desc="Creating output files...")
# Create temporary directory for output files
temp_dir = Path(tempfile.mkdtemp())
output_files = []
for image_name, collection in results.items():
if isinstance(collection, str): # Error case
# Write error to text file
error_file_path = temp_dir / f"{image_name}_error.txt"
with open(error_file_path, 'w') as f:
f.write(collection)
output_files.append(error_file_path)
else:
# Save collection in requested format
export_dir = temp_dir / image_name
collection.save(directory=str(export_dir), serializer=output_format)
# Find and rename the generated file
for root, _, files in os.walk(export_dir):
for file in files:
old_path = Path(root) / file
file_ext = Path(file).suffix
new_filename = (
f"{image_name}.{output_format}"
if not file_ext
else f"{image_name}{file_ext}"
)
new_path = temp_dir / new_filename
shutil.move(str(old_path), str(new_path))
output_files.append(new_path)
break
# Return single file or ZIP based on input count
if len(output_files) == 1 and len(image_paths) == 1:
# Single file - return directly
if progress:
progress(1.0, desc="Processing complete!")
return str(output_files[0])
else:
# Multiple files - create ZIP
zip_path = temp_dir / f"htr_output_{output_format}.zip"
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file_path in output_files:
zipf.write(file_path, file_path.name)
if progress:
progress(1.0, desc=f"Processing complete! Generated {len(output_files)} files.")
return str(zip_path)
except ValueError as e:
error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
error_file.write(f"Input error: {str(e)}")
error_file.close()
return error_file.name
except Exception as e:
error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
error_file.write(f"HTR file generation failed: {str(e)}")
error_file.close()
return error_file.name
def htr_visualize(
image_input: Union[str, List[str]],
htr_documents: Union[List[str], None],
progress: gr.Progress = gr.Progress()
) -> str:
"""
Create visualizations for HTR results overlaid on original documents.
Returns a ZIP file for multiple documents, or single image for single document.
Args:
image_input: Original document image paths/URLs (newline-separated if string)
htr_documents: HTR output files (ALTO/PAGE XML) - must match order of images
progress: Progress tracker for UI updates
Returns:
Path to visualization file(s)
"""
try:
if progress:
progress(0, desc="Starting visualization generation...")
# Parse inputs
image_paths = parse_image_input(image_input)
# Handle htr_documents - it should be a list of file paths
if not htr_documents:
raise ValueError("No HTR documents provided")
# If htr_documents is a list of file objects from Gradio, extract paths
htr_paths = []
if isinstance(htr_documents, list):
for doc in htr_documents:
if isinstance(doc, str):
htr_paths.append(doc)
elif hasattr(doc, 'name'):
htr_paths.append(doc.name)
else:
htr_paths.append(str(doc))
else:
# Single file case
if isinstance(htr_documents, str):
htr_paths = [htr_documents]
elif hasattr(htr_documents, 'name'):
htr_paths = [htr_documents.name]
else:
htr_paths = [str(htr_documents)]
if not image_paths:
raise ValueError("No images provided")
if len(image_paths) != len(htr_paths):
raise ValueError(f"Number of images ({len(image_paths)}) doesn't match number of HTR documents ({len(htr_paths)})")
num_docs = len(image_paths)
if progress:
progress(0.1, desc=f"Creating visualization{'s' if num_docs > 1 else ''} for {num_docs} document{'s' if num_docs > 1 else ''}...")
temp_dir = Path(tempfile.mkdtemp())
output_files = []
temp_files = []
for idx, (image_path, htr_path) in enumerate(zip(image_paths, htr_paths)):
try:
image_name = Path(image_path).stem if not image_path.startswith("http") else f"image_{idx+1}"
if progress:
progress((idx + 0.3) / num_docs,
desc=f"Visualizing document {idx+1}/{num_docs}: {image_name}")
# Handle image input
processed_image = handle_image_input(image_path, progress,
desc_prefix=f"[{idx+1}/{num_docs}] ")
if processed_image.startswith(tempfile.gettempdir()):
temp_files.append(processed_image)
# Generate visualization - use the last parameter for output path
output_viz_path = str(temp_dir / f"{image_name}_visualization.png")
viz_result = htrflow_visualizer(processed_image, htr_path, output_viz_path)
# Check if visualization was created
if os.path.exists(output_viz_path):
output_files.append(Path(output_viz_path))
elif viz_result and os.path.exists(viz_result):
# Fallback: if viz_result points to a different file
viz_path = temp_dir / f"{image_name}_visualization.png"
shutil.move(viz_result, str(viz_path))
output_files.append(viz_path)
else:
raise ValueError("Visualization generation failed - no output file created")
except Exception as e:
# Create error file for this visualization
error_path = temp_dir / f"{image_name}_viz_error.txt"
with open(error_path, 'w') as f:
f.write(f"Visualization failed: {str(e)}")
output_files.append(error_path)
print(f"Error visualizing {image_name}: {str(e)}")
# Cleanup temp files
for temp_file in temp_files:
try:
os.unlink(temp_file)
except:
pass
# Return single file or ZIP based on input count
if len(output_files) == 1 and num_docs == 1:
# Single visualization - return directly
if progress:
progress(1.0, desc="Visualization complete!")
return str(output_files[0])
else:
# Multiple visualizations - create ZIP
if progress:
progress(0.9, desc="Creating ZIP archive...")
zip_path = temp_dir / "htr_visualizations.zip"
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
for file_path in output_files:
zipf.write(file_path, file_path.name)
if progress:
progress(1.0, desc=f"Visualization complete! Created {len(output_files)} visualization{'s' if len(output_files) > 1 else ''}.")
return str(zip_path)
except Exception as e:
error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
error_file.write(f"Visualization failed: {str(e)}")
error_file.close()
return error_file.name
def create_htrflow_mcp_server():
# HTR Text extraction interface
htr_text_interface = gr.Interface(
fn=htr_text,
inputs=[
gr.Textbox(
label="Image Input",
placeholder="Single image path/URL or multiple (one per line)\nYou can also drag and drop files here",
lines=3
),
gr.Dropdown(
choices=FORMAT_CHOICES,
value="letter_swedish",
label="Document Type",
info="Select the type that best matches your documents' layout and language"
),
gr.Textbox(
label="Custom Settings (JSON)",
placeholder='{"steps": [...]} - Leave empty for default settings',
value="",
lines=3
),
gr.Radio(
choices=["separate", "combined"],
value="separate",
label="Output Format",
info="'separate' shows each document's text with headers, 'combined' merges all text"
),
],
outputs=[gr.Textbox(label="Extracted Text", lines=20)],
title="Extract Text from Handwritten Documents",
description="Process one or more handwritten document images. Works with letters and book spreads in English and Swedish.",
api_name="htr_text",
)
# HTR File generation interface
htr_files_interface = gr.Interface(
fn=htr_generate_files,
inputs=[
gr.Textbox(
label="Image Input",
placeholder="Single image path/URL or multiple (one per line)\nYou can also drag and drop files here",
lines=3
),
gr.Dropdown(
choices=FORMAT_CHOICES,
value="letter_swedish",
label="Document Type",
info="Select the type that best matches your documents' layout and language"
),
gr.Dropdown(
choices=FILE_CHOICES,
value=DEFAULT_OUTPUT,
label="Output Format",
info="ALTO/PAGE: XML with coordinates | JSON: Structured data | TXT: Plain text only"
),
gr.Textbox(
label="Custom Settings (JSON)",
placeholder='{"steps": [...]} - Leave empty for default settings',
value="",
lines=3
),
],
outputs=[gr.File(label="Download HTR Output")],
title="Generate HTR Output Files",
description="Process handwritten documents and export in various formats. Returns ZIP for multiple files.",
api_name="htr_generate_files",
)
# HTR Visualization interface
htr_viz_interface = gr.Interface(
fn=htr_visualize,
inputs=[
gr.Textbox(
label="Original Image Paths/URLs",
placeholder="One path/URL per line",
lines=3
),
gr.File(
label="Upload HTR XML Files (ALTO/PAGE)",
file_types=[".xml"],
file_count="multiple"
),
],
outputs=gr.File(label="Download Visualization"),
title="Visualize HTR Results",
description="Create annotated images showing detected regions and text. Files must be in matching order.",
api_name="htr_visualize",
)
# Create tabbed interface
demo = gr.TabbedInterface(
[
htr_text_interface,
htr_files_interface,
htr_viz_interface,
],
[
"📚 Extract Text",
"📁 Generate Files",
"🖼️ Visualize Results",
],
title="🖋️ HTRflow - Handwritten Text Recognition",
analytics_enabled=False,
)
return demo
if __name__ == "__main__":
demo = create_htrflow_mcp_server()
demo.launch(
mcp_server=True,
share=False,
debug=False,
show_api=True,
favicon_path=None,
) |