|
|
import gradio as gr |
|
|
from transformers import pipeline |
|
|
|
|
|
|
|
|
generator = pipeline("text2text-generation", model="google/flan-t5-small") |
|
|
|
|
|
|
|
|
def doc_agent(user_text): |
|
|
|
|
|
summary_prompt = f"Summarize this in 3 lines: {user_text}" |
|
|
summary = generator(summary_prompt, max_length=80, do_sample=False)[0]['generated_text'] |
|
|
|
|
|
|
|
|
keyword_prompt = f"Extract 5 important keywords from this text: {user_text}" |
|
|
keywords = generator(keyword_prompt, max_length=40, do_sample=False)[0]['generated_text'] |
|
|
graph_nodes = [kw.strip() for kw in keywords.split(",") if kw.strip()] |
|
|
graph_repr = " β ".join(graph_nodes) if graph_nodes else "No graph generated." |
|
|
|
|
|
return f"π Summary:\n{summary}\n\nπΈοΈ Knowledge Graph:\n{graph_repr}" |
|
|
|
|
|
|
|
|
def career_agent(user_goal): |
|
|
|
|
|
analysis_prompt = f"Identify skill gap for this career goal: {user_goal}" |
|
|
analysis = generator(analysis_prompt, max_length=50, do_sample=False)[0]['generated_text'] |
|
|
|
|
|
|
|
|
roadmap_prompt = f"Suggest a 3-step learning roadmap for: {user_goal}" |
|
|
roadmap = generator(roadmap_prompt, max_length=80, do_sample=False)[0]['generated_text'] |
|
|
|
|
|
return f"π Gap Analysis:\n{analysis}\n\nπ οΈ Skill Roadmap:\n{roadmap}" |
|
|
|
|
|
|
|
|
def agentic_ai(user_input, mode): |
|
|
if mode == "Document Insight": |
|
|
return doc_agent(user_input) |
|
|
elif mode == "Career Roadmap": |
|
|
return career_agent(user_input) |
|
|
else: |
|
|
return "β οΈ Please choose a valid mode." |
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=agentic_ai, |
|
|
inputs=[ |
|
|
gr.Textbox(lines=4, placeholder="Enter text or career goal..."), |
|
|
gr.Radio(["Document Insight", "Career Roadmap"], label="Choose Mode") |
|
|
], |
|
|
outputs="text", |
|
|
title="π Mini Agentic AI MVP", |
|
|
description=""" |
|
|
This smallest MVP demonstrates: |
|
|
- π Document Summarization |
|
|
- πΈοΈ Knowledge Graph (mini keyword graph) |
|
|
- π§βπ» Career Skill Gap Analysis |
|
|
- π οΈ Personalized 3-step Roadmap |
|
|
|
|
|
Built with free Hugging Face + Gradio. Optimized for AI Research use cases. |
|
|
""" |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|