debug
Browse files
app.py
CHANGED
|
@@ -345,7 +345,7 @@ def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_s
|
|
| 345 |
inputs = tokenizer(
|
| 346 |
input_intension, return_tensors="pt"
|
| 347 |
).to(model.lm.device)
|
| 348 |
-
print(inputs.device)
|
| 349 |
print("tokenizer2")
|
| 350 |
|
| 351 |
stopping_criteria = StoppingCriteriaList()
|
|
@@ -401,6 +401,8 @@ def inference(generate_method, intention, model, quantizer, tokenizer, width, he
|
|
| 401 |
|
| 402 |
# @spaces.GPU(enable_queue=True, duration=60)
|
| 403 |
def construction():
|
|
|
|
|
|
|
| 404 |
from custom_model_mmdit import CustomFluxTransformer2DModel
|
| 405 |
from custom_model_transp_vae import AutoencoderKLTransformerTraining as CustomVAE
|
| 406 |
from custom_pipeline import CustomFluxPipelineCfg
|
|
@@ -429,7 +431,7 @@ def construction():
|
|
| 429 |
).to("cuda")
|
| 430 |
pipeline.enable_model_cpu_offload(gpu_id=0) # Save GPU memory
|
| 431 |
|
| 432 |
-
return pipeline, transp_vae
|
| 433 |
|
| 434 |
@spaces.GPU(duration=60)
|
| 435 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
|
@@ -461,6 +463,7 @@ def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps,
|
|
| 461 |
return output_gradio
|
| 462 |
|
| 463 |
def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, inference_steps, pipeline, transp_vae):
|
|
|
|
| 464 |
generator = torch.Generator().manual_seed(seed)
|
| 465 |
try:
|
| 466 |
validation_box = ast.literal_eval(validation_box_str)
|
|
@@ -471,8 +474,9 @@ def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, in
|
|
| 471 |
|
| 472 |
validation_box = adjust_validation_box(validation_box)
|
| 473 |
|
|
|
|
| 474 |
result_images = test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae)
|
| 475 |
-
|
| 476 |
svg_img = pngs_to_svg(result_images[1:])
|
| 477 |
|
| 478 |
svg_file_path = './image.svg'
|
|
@@ -491,6 +495,31 @@ def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, in
|
|
| 491 |
raise ValueError(f"文件 {svg_file_path} 内容为空")
|
| 492 |
|
| 493 |
return result_images, svg_file_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
|
| 495 |
def main():
|
| 496 |
model, quantizer, tokenizer, width, height, device = construction_layout()
|
|
@@ -550,36 +579,39 @@ def main():
|
|
| 550 |
# json_file = "/home/wyb/openseg_blob/v-yanbin/GradioDemo/LLM-For-Layout-Planning/inference_test.json"
|
| 551 |
# return wholecaption, str(list_box), json_file
|
| 552 |
|
| 553 |
-
pipeline, transp_vae = construction()
|
|
|
|
| 554 |
|
| 555 |
-
gradio_test_one_sample_partial = partial(
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
)
|
| 560 |
|
| 561 |
-
def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
| 562 |
-
|
| 563 |
-
|
|
|
|
|
|
|
| 564 |
|
| 565 |
-
|
| 566 |
-
|
| 567 |
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
|
| 582 |
-
|
| 583 |
|
| 584 |
def one_click_generate(intention_input, temperature, top_p, seed, true_gs, inference_steps):
|
| 585 |
# 首先调用process_preddate
|
|
|
|
| 345 |
inputs = tokenizer(
|
| 346 |
input_intension, return_tensors="pt"
|
| 347 |
).to(model.lm.device)
|
| 348 |
+
# print(inputs.device)
|
| 349 |
print("tokenizer2")
|
| 350 |
|
| 351 |
stopping_criteria = StoppingCriteriaList()
|
|
|
|
| 401 |
|
| 402 |
# @spaces.GPU(enable_queue=True, duration=60)
|
| 403 |
def construction():
|
| 404 |
+
global pipeline
|
| 405 |
+
global transp_vae
|
| 406 |
from custom_model_mmdit import CustomFluxTransformer2DModel
|
| 407 |
from custom_model_transp_vae import AutoencoderKLTransformerTraining as CustomVAE
|
| 408 |
from custom_pipeline import CustomFluxPipelineCfg
|
|
|
|
| 431 |
).to("cuda")
|
| 432 |
pipeline.enable_model_cpu_offload(gpu_id=0) # Save GPU memory
|
| 433 |
|
| 434 |
+
# return pipeline, transp_vae
|
| 435 |
|
| 436 |
@spaces.GPU(duration=60)
|
| 437 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
|
|
|
| 463 |
return output_gradio
|
| 464 |
|
| 465 |
def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, inference_steps, pipeline, transp_vae):
|
| 466 |
+
print("svg_test_one_sample")
|
| 467 |
generator = torch.Generator().manual_seed(seed)
|
| 468 |
try:
|
| 469 |
validation_box = ast.literal_eval(validation_box_str)
|
|
|
|
| 474 |
|
| 475 |
validation_box = adjust_validation_box(validation_box)
|
| 476 |
|
| 477 |
+
print("result_images = test_one_sample")
|
| 478 |
result_images = test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae)
|
| 479 |
+
print("after result_images = test_one_sample")
|
| 480 |
svg_img = pngs_to_svg(result_images[1:])
|
| 481 |
|
| 482 |
svg_file_path = './image.svg'
|
|
|
|
| 495 |
raise ValueError(f"文件 {svg_file_path} 内容为空")
|
| 496 |
|
| 497 |
return result_images, svg_file_path
|
| 498 |
+
|
| 499 |
+
def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
| 500 |
+
print("precess_svg")
|
| 501 |
+
result_images = []
|
| 502 |
+
result_images, svg_file_path = svg_test_one_sample(text_input, tuple_input, seed, true_gs, inference_steps, pipeline=pipeline, transp_vae=transp_vae)
|
| 503 |
+
# result_images, svg_file_path = gradio_test_one_sample_partial(text_input, tuple_input, seed, true_gs, inference_steps)
|
| 504 |
+
|
| 505 |
+
url, unique_filename = upload_to_github(file_path=svg_file_path)
|
| 506 |
+
unique_filename = f'{unique_filename}'
|
| 507 |
+
|
| 508 |
+
if url != None:
|
| 509 |
+
print(f"File uploaded to: {url}")
|
| 510 |
+
svg_editor = f"""
|
| 511 |
+
<iframe src="https://svgedit.netlify.app/editor/index.html?\
|
| 512 |
+
storagePrompt=false&url={url}" \
|
| 513 |
+
width="100%", height="800px"></iframe>
|
| 514 |
+
"""
|
| 515 |
+
else:
|
| 516 |
+
print('upload_to_github FAILED!')
|
| 517 |
+
svg_editor = f"""
|
| 518 |
+
<iframe src="https://svgedit.netlify.app/editor/index.html" \
|
| 519 |
+
width="100%", height="800px"></iframe>
|
| 520 |
+
"""
|
| 521 |
+
|
| 522 |
+
return result_images, svg_file_path, svg_editor
|
| 523 |
|
| 524 |
def main():
|
| 525 |
model, quantizer, tokenizer, width, height, device = construction_layout()
|
|
|
|
| 579 |
# json_file = "/home/wyb/openseg_blob/v-yanbin/GradioDemo/LLM-For-Layout-Planning/inference_test.json"
|
| 580 |
# return wholecaption, str(list_box), json_file
|
| 581 |
|
| 582 |
+
# pipeline, transp_vae = construction()
|
| 583 |
+
construction()
|
| 584 |
|
| 585 |
+
# gradio_test_one_sample_partial = partial(
|
| 586 |
+
# svg_test_one_sample,
|
| 587 |
+
# pipeline=pipeline,
|
| 588 |
+
# transp_vae=transp_vae,
|
| 589 |
+
# )
|
| 590 |
|
| 591 |
+
# def process_svg(text_input, tuple_input, seed, true_gs, inference_steps):
|
| 592 |
+
# print("precess_svg")
|
| 593 |
+
# result_images = []
|
| 594 |
+
# result_images, svg_file_path = svg_test_one_sample(text_input, tuple_input, seed, true_gs, inference_steps, pipeline=pipeline, transp_vae=transp_vae)
|
| 595 |
+
# # result_images, svg_file_path = gradio_test_one_sample_partial(text_input, tuple_input, seed, true_gs, inference_steps)
|
| 596 |
|
| 597 |
+
# url, unique_filename = upload_to_github(file_path=svg_file_path)
|
| 598 |
+
# unique_filename = f'{unique_filename}'
|
| 599 |
|
| 600 |
+
# if url != None:
|
| 601 |
+
# print(f"File uploaded to: {url}")
|
| 602 |
+
# svg_editor = f"""
|
| 603 |
+
# <iframe src="https://svgedit.netlify.app/editor/index.html?\
|
| 604 |
+
# storagePrompt=false&url={url}" \
|
| 605 |
+
# width="100%", height="800px"></iframe>
|
| 606 |
+
# """
|
| 607 |
+
# else:
|
| 608 |
+
# print('upload_to_github FAILED!')
|
| 609 |
+
# svg_editor = f"""
|
| 610 |
+
# <iframe src="https://svgedit.netlify.app/editor/index.html" \
|
| 611 |
+
# width="100%", height="800px"></iframe>
|
| 612 |
+
# """
|
| 613 |
|
| 614 |
+
# return result_images, svg_file_path, svg_editor
|
| 615 |
|
| 616 |
def one_click_generate(intention_input, temperature, top_p, seed, true_gs, inference_steps):
|
| 617 |
# 首先调用process_preddate
|