debug
Browse files- __pycache__/custom_model_mmdit.cpython-310.pyc +0 -0
- __pycache__/custom_model_transp_vae.cpython-310.pyc +0 -0
- __pycache__/custom_pipeline.cpython-310.pyc +0 -0
- __pycache__/modeling_crello.cpython-310.pyc +0 -0
- __pycache__/quantizer.cpython-310.pyc +0 -0
- app.py +17 -3
- image.svg +0 -0
- modeling_crello.py +3 -0
__pycache__/custom_model_mmdit.cpython-310.pyc
ADDED
|
Binary file (10.8 kB). View file
|
|
|
__pycache__/custom_model_transp_vae.cpython-310.pyc
ADDED
|
Binary file (10.4 kB). View file
|
|
|
__pycache__/custom_pipeline.cpython-310.pyc
ADDED
|
Binary file (18 kB). View file
|
|
|
__pycache__/modeling_crello.cpython-310.pyc
ADDED
|
Binary file (6.4 kB). View file
|
|
|
__pycache__/quantizer.cpython-310.pyc
ADDED
|
Binary file (14.6 kB). View file
|
|
|
app.py
CHANGED
|
@@ -333,10 +333,11 @@ def construction_layout():
|
|
| 333 |
# quantizer = quantizer.to("cuda")
|
| 334 |
# tokenizer = tokenizer.to("cuda")
|
| 335 |
model.lm = model.lm.to("cuda")
|
|
|
|
| 336 |
return model, quantizer, tokenizer, params_dict["width"], params_dict["height"], device
|
| 337 |
|
| 338 |
@torch.no_grad()
|
| 339 |
-
@spaces.GPU(
|
| 340 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
| 341 |
json_example = inputs
|
| 342 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
|
@@ -344,14 +345,17 @@ def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_s
|
|
| 344 |
inputs = tokenizer(
|
| 345 |
input_intension, return_tensors="pt"
|
| 346 |
).to(model.lm.device)
|
|
|
|
| 347 |
print("tokenizer2")
|
| 348 |
|
| 349 |
stopping_criteria = StoppingCriteriaList()
|
| 350 |
stopping_criteria.append(StopAtSpecificTokenCriteria(token_id_list=[128000]))
|
| 351 |
|
| 352 |
print("lm1")
|
|
|
|
| 353 |
outputs = model.lm.generate(**inputs, use_cache=True, max_length=8000, stopping_criteria=stopping_criteria, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
| 354 |
print("lm2")
|
|
|
|
| 355 |
inputs_length = inputs['input_ids'].shape[1]
|
| 356 |
outputs = outputs[:, inputs_length:]
|
| 357 |
|
|
@@ -427,7 +431,7 @@ def construction():
|
|
| 427 |
|
| 428 |
return pipeline, transp_vae
|
| 429 |
|
| 430 |
-
@spaces.GPU(
|
| 431 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
| 432 |
print(validation_box)
|
| 433 |
output, rgba_output, _, _ = pipeline(
|
|
@@ -474,7 +478,17 @@ def svg_test_one_sample(validation_prompt, validation_box_str, seed, true_gs, in
|
|
| 474 |
svg_file_path = './image.svg'
|
| 475 |
os.makedirs(os.path.dirname(svg_file_path), exist_ok=True)
|
| 476 |
with open(svg_file_path, 'w', encoding='utf-8') as f:
|
| 477 |
-
f.write(svg_img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
|
| 479 |
return result_images, svg_file_path
|
| 480 |
|
|
|
|
| 333 |
# quantizer = quantizer.to("cuda")
|
| 334 |
# tokenizer = tokenizer.to("cuda")
|
| 335 |
model.lm = model.lm.to("cuda")
|
| 336 |
+
print(model.lm.device)
|
| 337 |
return model, quantizer, tokenizer, params_dict["width"], params_dict["height"], device
|
| 338 |
|
| 339 |
@torch.no_grad()
|
| 340 |
+
@spaces.GPU(duration=60)
|
| 341 |
def evaluate_v1(inputs, model, quantizer, tokenizer, width, height, device, do_sample=False, temperature=1.0, top_p=1.0, top_k=50):
|
| 342 |
json_example = inputs
|
| 343 |
input_intension = '{"wholecaption":"' + json_example["wholecaption"] + '","layout":[{"layer":'
|
|
|
|
| 345 |
inputs = tokenizer(
|
| 346 |
input_intension, return_tensors="pt"
|
| 347 |
).to(model.lm.device)
|
| 348 |
+
print(inputs.device)
|
| 349 |
print("tokenizer2")
|
| 350 |
|
| 351 |
stopping_criteria = StoppingCriteriaList()
|
| 352 |
stopping_criteria.append(StopAtSpecificTokenCriteria(token_id_list=[128000]))
|
| 353 |
|
| 354 |
print("lm1")
|
| 355 |
+
print(model.lm.device)
|
| 356 |
outputs = model.lm.generate(**inputs, use_cache=True, max_length=8000, stopping_criteria=stopping_criteria, do_sample=do_sample, temperature=temperature, top_p=top_p, top_k=top_k)
|
| 357 |
print("lm2")
|
| 358 |
+
|
| 359 |
inputs_length = inputs['input_ids'].shape[1]
|
| 360 |
outputs = outputs[:, inputs_length:]
|
| 361 |
|
|
|
|
| 431 |
|
| 432 |
return pipeline, transp_vae
|
| 433 |
|
| 434 |
+
@spaces.GPU(duration=60)
|
| 435 |
def test_one_sample(validation_box, validation_prompt, true_gs, inference_steps, pipeline, generator, transp_vae):
|
| 436 |
print(validation_box)
|
| 437 |
output, rgba_output, _, _ = pipeline(
|
|
|
|
| 478 |
svg_file_path = './image.svg'
|
| 479 |
os.makedirs(os.path.dirname(svg_file_path), exist_ok=True)
|
| 480 |
with open(svg_file_path, 'w', encoding='utf-8') as f:
|
| 481 |
+
f.write(svg_img)
|
| 482 |
+
|
| 483 |
+
if not isinstance(result_images, list):
|
| 484 |
+
raise TypeError("result_images 必须是一个列表")
|
| 485 |
+
else:
|
| 486 |
+
print(len(result_images))
|
| 487 |
+
|
| 488 |
+
if not os.path.exists(svg_file_path):
|
| 489 |
+
raise FileNotFoundError(f"文件 {svg_file_path} 未创建")
|
| 490 |
+
if os.path.getsize(svg_file_path) == 0:
|
| 491 |
+
raise ValueError(f"文件 {svg_file_path} 内容为空")
|
| 492 |
|
| 493 |
return result_images, svg_file_path
|
| 494 |
|
image.svg
ADDED
|
|
modeling_crello.py
CHANGED
|
@@ -196,6 +196,7 @@ class CrelloModel(PreTrainedModel):
|
|
| 196 |
self,
|
| 197 |
labels: torch.LongTensor,
|
| 198 |
):
|
|
|
|
| 199 |
batch_size = labels.shape[0]
|
| 200 |
full_labels = labels.detach().clone()
|
| 201 |
|
|
@@ -219,10 +220,12 @@ class CrelloModel(PreTrainedModel):
|
|
| 219 |
pad_idx.append(k + 1)
|
| 220 |
assert len(pad_idx) == batch_size, (len(pad_idx), batch_size)
|
| 221 |
|
|
|
|
| 222 |
output = self.lm( inputs_embeds=input_embs,
|
| 223 |
# input_ids=labels,
|
| 224 |
labels=full_labels,
|
| 225 |
output_hidden_states=True)
|
|
|
|
| 226 |
|
| 227 |
return output, full_labels, input_embs_norm
|
| 228 |
|
|
|
|
| 196 |
self,
|
| 197 |
labels: torch.LongTensor,
|
| 198 |
):
|
| 199 |
+
print("inside Crello")
|
| 200 |
batch_size = labels.shape[0]
|
| 201 |
full_labels = labels.detach().clone()
|
| 202 |
|
|
|
|
| 220 |
pad_idx.append(k + 1)
|
| 221 |
assert len(pad_idx) == batch_size, (len(pad_idx), batch_size)
|
| 222 |
|
| 223 |
+
print("inside Crello, lm1")
|
| 224 |
output = self.lm( inputs_embeds=input_embs,
|
| 225 |
# input_ids=labels,
|
| 226 |
labels=full_labels,
|
| 227 |
output_hidden_states=True)
|
| 228 |
+
print("inside Crello, lm2")
|
| 229 |
|
| 230 |
return output, full_labels, input_embs_norm
|
| 231 |
|