Spaces:
Runtime error
Runtime error
File size: 5,734 Bytes
b97cf6d 48dfdf0 b97cf6d 48dfdf0 b97cf6d 48dfdf0 b97cf6d 48dfdf0 b97cf6d 48dfdf0 b97cf6d 48dfdf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# import gradio as gr
# import os
# os.environ["UNSLOTH_DEVICE"] = "cuda"
# from unsloth import FastLanguageModel
# import torch
# HF_TOKEN = os.environ["HF_TOKEN"]
# # -------------------- Load Model --------------------
# model, tokenizer = FastLanguageModel.from_pretrained(
# model_name="ak0601/gpt-oss-20b-persona-chat", # your trained model
# max_seq_length=1024,
# dtype=None,
# load_in_4bit=True,
# device_map="auto",
# token=HF_TOKEN
# )
# # -------------------- Conversation Formatter --------------------
# def format_conversation(conversation):
# text = ""
# for turn in conversation:
# if turn["role"] == "system":
# text += f"[SYSTEM] {turn['content']}\n"
# elif turn["role"] == "user":
# text += f"[USER] {turn['content']}\n"
# elif turn["role"] == "assistant":
# text += f"[ASSISTANT] {turn['content']}\n"
# text += "[ASSISTANT]"
# return text
# def generate_reply(conversation):
# inputs = tokenizer(
# format_conversation(conversation),
# return_tensors="pt"
# ).to(model.device)
# output_ids = model.generate(
# **inputs,
# max_new_tokens=256,
# temperature=0.7,
# top_p=0.9,
# repetition_penalty=1.1,
# eos_token_id=tokenizer.eos_token_id,
# )
# response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
# response = response.split("[ASSISTANT]")[-1].strip()
# return response
# # -------------------- Gradio Functions --------------------
# def start_chat(persona):
# conversation = [
# {"role": "system", "content": f"""You are a digital twin.
# ONLY respond based on persona and user input.
# \nPersona: {persona}"""},
# ]
# return conversation, [(None, "How can I help you?")]
# def chat(user_message, history, conversation):
# conversation.append({"role": "user", "content": user_message})
# reply = generate_reply(conversation)
# conversation.append({"role": "assistant", "content": reply})
# history.append((user_message, reply))
# return history, conversation
# # -------------------- Gradio UI --------------------
# with gr.Blocks() as demo:
# gr.Markdown("## π€ Digital Twin Chat")
# persona_box = gr.Textbox(label="Enter your persona",
# value="I am male. I am unsociable. I have a weakness for sweets. I am a jack of all, master of none.")
# start_btn = gr.Button("Start Chat")
# chatbot = gr.Chatbot()
# msg = gr.Textbox(label="Your message")
# state_conversation = gr.State([])
# state_history = gr.State([])
# start_btn.click(start_chat, inputs=persona_box, outputs=[state_conversation, chatbot])
# msg.submit(chat, inputs=[msg, chatbot, state_conversation], outputs=[chatbot, state_conversation])
# demo.launch()
import gradio as gr
import torch
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
HF_TOKEN = os.environ["HF_TOKEN"]
# -------------------- Load Model --------------------
model_name = "ak0601/gpt-oss-20b-persona-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto", # automatically places model on GPU
torch_dtype=torch.float16, # efficient for H200
load_in_4bit=True, # quantization if available
token=HF_TOKEN
)
# -------------------- Conversation Formatter --------------------
def format_conversation(conversation):
text = ""
for turn in conversation:
if turn["role"] == "system":
text += f"[SYSTEM] {turn['content']}\n"
elif turn["role"] == "user":
text += f"[USER] {turn['content']}\n"
elif turn["role"] == "assistant":
text += f"[ASSISTANT] {turn['content']}\n"
text += "[ASSISTANT]"
return text
def generate_reply(conversation):
inputs = tokenizer(
format_conversation(conversation),
return_tensors="pt"
).to(model.device)
output_ids = model.generate(
**inputs,
max_new_tokens=256,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
response = response.split("[ASSISTANT]")[-1].strip()
return response
# -------------------- Gradio Functions --------------------
def start_chat(persona):
conversation = [
{"role": "system", "content": f"""You are a digital twin.
ONLY respond based on persona and user input.
\nPersona: {persona}"""},
]
return conversation, [(None, "How can I help you?")]
def chat(user_message, history, conversation):
conversation.append({"role": "user", "content": user_message})
reply = generate_reply(conversation)
conversation.append({"role": "assistant", "content": reply})
history.append((user_message, reply))
return history, conversation
# -------------------- Gradio UI --------------------
with gr.Blocks() as demo:
gr.Markdown("## π€ Digital Twin Chat")
persona_box = gr.Textbox(label="Enter your persona",
value="I am male. I am unsociable. I have a weakness for sweets. I am a jack of all, master of none.")
start_btn = gr.Button("Start Chat")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Your message")
state_conversation = gr.State([])
state_history = gr.State([])
start_btn.click(start_chat, inputs=persona_box, outputs=[state_conversation, chatbot])
msg.submit(chat, inputs=[msg, chatbot, state_conversation], outputs=[chatbot, state_conversation])
demo.launch()
|