mcp / gradio_app.py
Tracy André
Remove local file loading - HF dataset only
8ecf5f5
raw
history blame
18.4 kB
"""
Gradio interface for the Agricultural MCP Server.
Provides a web interface for interacting with agricultural data analysis tools.
"""
import gradio as gr
import json
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import os
from data_loader import AgriculturalDataLoader
from analysis_tools import AgriculturalAnalyzer
# Initialize components
# Use Hugging Face dataset exclusively
data_loader = AgriculturalDataLoader()
print("🤗 Configured to use Hugging Face dataset exclusively")
analyzer = AgriculturalAnalyzer(data_loader)
# Global state for data
def load_initial_data():
"""Load and cache initial data."""
try:
df = data_loader.load_all_files()
return df
except Exception as e:
print(f"Error loading data: {e}")
return pd.DataFrame()
def get_data_summary():
"""Get summary of the agricultural data."""
try:
df = load_initial_data()
if df.empty:
return "Aucune donnée disponible"
summary = f"""
## Résumé des Données Agricoles - Station Expérimentale de Kerguéhennec
📊 **Statistiques Générales:**
- **Total d'enregistrements:** {len(df):,}
- **Parcelles uniques:** {df['plot_name'].nunique()}
- **Types de cultures:** {df['crop_type'].nunique()}
- **Années couvertes:** {', '.join(map(str, sorted(df['year'].unique())))}
- **Applications herbicides:** {len(df[df['is_herbicide'] == True]):,}
🌱 **Cultures principales:**
{df['crop_type'].value_counts().head(5).to_string()}
📍 **Parcelles principales:**
{df['plot_name'].value_counts().head(5).to_string()}
"""
return summary
except Exception as e:
return f"Erreur lors du chargement des données: {str(e)}"
def filter_and_analyze_data(years, plots, crops):
"""Filter data and provide analysis."""
try:
df = load_initial_data()
if df.empty:
return "Aucune donnée disponible", None
# Convert inputs to lists if not None
year_list = [int(y) for y in years] if years else None
plot_list = plots if plots else None
crop_list = crops if crops else None
# Filter data
filtered_df = data_loader.filter_data(
years=year_list,
plots=plot_list,
crops=crop_list
)
if filtered_df.empty:
return "Aucune donnée trouvée avec ces filtres", None
# Generate analysis
analysis = f"""
## Analyse des Données Filtrées
**Filtres appliqués:**
- Années: {years if years else 'Toutes'}
- Parcelles: {', '.join(plots) if plots else 'Toutes'}
- Cultures: {', '.join(crops) if crops else 'Toutes'}
**Résultats:**
- Enregistrements filtrés: {len(filtered_df):,}
- Applications herbicides: {len(filtered_df[filtered_df['is_herbicide'] == True]):,}
- Parcelles concernées: {filtered_df['plot_name'].nunique()}
- Cultures concernées: {filtered_df['crop_type'].nunique()}
**Distribution par année:**
{filtered_df['year'].value_counts().sort_index().to_string()}
"""
# Create visualization
yearly_dist = filtered_df['year'].value_counts().sort_index()
fig = px.bar(
x=yearly_dist.index,
y=yearly_dist.values,
title="Distribution des Interventions par Année",
labels={'x': 'Année', 'y': 'Nombre d\'Interventions'}
)
return analysis, fig
except Exception as e:
return f"Erreur lors de l'analyse: {str(e)}", None
def analyze_weed_pressure(years, plots):
"""Analyze weed pressure trends."""
try:
# Convert inputs
year_list = [int(y) for y in years] if years else None
plot_list = plots if plots else None
# Get analysis
trends = analyzer.analyze_weed_pressure_trends(years=year_list, plots=plot_list)
# Format results
summary_stats = trends['summary']
analysis_text = f"""
## Analyse de la Pression Adventices (IFT Herbicides)
**Statistiques globales:**
- IFT moyen: {summary_stats['mean_ift']:.2f}
- Écart-type: {summary_stats['std_ift']:.2f}
- IFT minimum: {summary_stats['min_ift']:.2f}
- IFT maximum: {summary_stats['max_ift']:.2f}
- Total applications: {summary_stats['total_applications']}
- Parcelles analysées: {summary_stats['unique_plots']}
- Cultures analysées: {summary_stats['unique_crops']}
**Interprétation:**
- IFT < 1.0: Pression faible (adapté aux cultures sensibles)
- IFT 1.0-2.0: Pression modérée
- IFT > 2.0: Pression élevée
"""
# Create visualization
fig = analyzer.create_weed_pressure_visualization(years=year_list, plots=plot_list)
return analysis_text, fig
except Exception as e:
return f"Erreur lors de l'analyse de pression: {str(e)}", None
def predict_future_weed_pressure(target_years, max_ift):
"""Predict weed pressure for future years."""
try:
# Convert target years
year_list = [int(y) for y in target_years] if target_years else [2025, 2026, 2027]
# Get predictions
predictions = analyzer.predict_weed_pressure(target_years=year_list)
# Format results
model_perf = predictions['model_performance']
results_text = f"""
## Prédiction de la Pression Adventices
**Performance du modèle:**
- R² Score: {model_perf['r2']:.3f}
- Erreur quadratique moyenne: {model_perf['mse']:.3f}
**Prédictions par année:**
"""
# Add predictions for each year
prediction_data = []
for year in year_list:
if year in predictions['predictions']:
year_pred = predictions['predictions'][year]
results_text += f"\n**{year}:**\n"
for _, row in year_pred.iterrows():
results_text += f"- {row['plot_name']}: IFT {row['predicted_ift']:.2f} (Risque: {row['risk_level']})\n"
prediction_data.append({
'Année': year,
'Parcelle': row['plot_name'],
'IFT_Prédit': row['predicted_ift'],
'Niveau_Risque': row['risk_level']
})
# Identify suitable plots
suitable_plots = analyzer.identify_suitable_plots_for_sensitive_crops(
target_years=year_list,
max_ift_threshold=max_ift
)
results_text += f"\n\n**Parcelles adaptées aux cultures sensibles (IFT < {max_ift}):**\n"
for year, plots in suitable_plots.items():
if plots:
results_text += f"- {year}: {', '.join(plots)}\n"
else:
results_text += f"- {year}: Aucune parcelle adaptée\n"
# Create visualization
if prediction_data:
pred_df = pd.DataFrame(prediction_data)
fig = px.scatter(
pred_df,
x='Année',
y='IFT_Prédit',
color='Niveau_Risque',
size='IFT_Prédit',
hover_data=['Parcelle'],
title="Prédictions IFT par Parcelle et Année",
color_discrete_map={'low': 'green', 'medium': 'orange', 'high': 'red'}
)
fig.add_hline(y=max_ift, line_dash="dash", line_color="red",
annotation_text=f"Seuil cultures sensibles ({max_ift})")
return results_text, fig
else:
return results_text, None
except Exception as e:
return f"Erreur lors de la prédiction: {str(e)}", None
def analyze_crop_rotation():
"""Analyze crop rotation impact."""
try:
rotation_impact = analyzer.analyze_crop_rotation_impact()
if rotation_impact.empty:
return "Pas assez de données pour analyser les rotations", None
analysis_text = f"""
## Impact des Rotations sur la Pression Adventices
**Rotations les plus favorables (IFT moyen le plus bas):**
"""
# Show top 10 best rotations
best_rotations = rotation_impact.head(10)
for _, row in best_rotations.iterrows():
analysis_text += f"\n- **{row['rotation_type']}**"
analysis_text += f"\n - IFT moyen: {row['mean_ift']:.2f}"
analysis_text += f"\n - Écart-type: {row['std_ift']:.2f}"
analysis_text += f"\n - Observations: {row['count']}\n"
# Create visualization
top_20 = rotation_impact.head(20)
fig = px.bar(
top_20,
x='mean_ift',
y='rotation_type',
orientation='h',
title="Impact des Rotations sur l'IFT Herbicide (Top 20)",
labels={'mean_ift': 'IFT Moyen', 'rotation_type': 'Type de Rotation'},
color='mean_ift',
color_continuous_scale='RdYlGn_r'
)
fig.update_layout(height=800)
return analysis_text, fig
except Exception as e:
return f"Erreur lors de l'analyse des rotations: {str(e)}", None
def analyze_herbicide_usage():
"""Analyze herbicide usage patterns."""
try:
herbicide_analysis = analyzer.analyze_herbicide_alternatives()
analysis_text = f"""
## Analyse des Herbicides Utilisés
**Herbicides les plus utilisés:**
"""
top_herbicides = herbicide_analysis.head(15)
for _, row in top_herbicides.iterrows():
analysis_text += f"\n- **{row['produit']}** ({row['crop_type']})"
analysis_text += f"\n - Applications: {row['applications']}"
analysis_text += f"\n - Quantité totale: {row['total_quantity']:.1f}"
analysis_text += f"\n - Quantité moyenne: {row['avg_quantity']:.1f}"
if not pd.isna(row['amm_code']):
analysis_text += f"\n - Code AMM: {row['amm_code']}"
analysis_text += "\n"
# Create visualization
fig = px.bar(
top_herbicides.head(10),
x='applications',
y='produit',
orientation='h',
title="Herbicides les Plus Utilisés (Nombre d'Applications)",
labels={'applications': 'Nombre d\'Applications', 'produit': 'Produit'},
color='applications'
)
fig.update_layout(height=600)
return analysis_text, fig
except Exception as e:
return f"Erreur lors de l'analyse des herbicides: {str(e)}", None
# Create Gradio interface
def create_gradio_app():
"""Create the Gradio application."""
# Load data for dropdowns
try:
df = load_initial_data()
available_years = sorted(df['year'].unique()) if not df.empty else []
available_plots = sorted(df['plot_name'].unique()) if not df.empty else []
available_crops = sorted(df['crop_type'].unique()) if not df.empty else []
except:
available_years = []
available_plots = []
available_crops = []
with gr.Blocks(title="🚜 Analyse Agricole - Station de Kerguéhennec", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# 🚜 Analyse des Données Agricoles
## Station Expérimentale de Kerguéhennec
### Outil d'aide à la décision pour la réduction des herbicides et l'identification des parcelles adaptées aux cultures sensibles
""")
with gr.Tabs():
# Tab 1: Data Overview
with gr.Tab("📊 Aperçu des Données"):
gr.Markdown("## Résumé des données disponibles")
summary_output = gr.Markdown(value=get_data_summary())
refresh_btn = gr.Button("🔄 Actualiser", variant="secondary")
refresh_btn.click(get_data_summary, outputs=summary_output)
# Tab 2: Data Filtering
with gr.Tab("🔍 Filtrage et Exploration"):
gr.Markdown("## Filtrer et explorer les données")
with gr.Row():
with gr.Column():
years_filter = gr.CheckboxGroup(
choices=[str(y) for y in available_years],
label="Années",
value=[str(y) for y in available_years[-3:]] if available_years else []
)
plots_filter = gr.CheckboxGroup(
choices=available_plots,
label="Parcelles",
value=available_plots[:5] if available_plots else []
)
crops_filter = gr.CheckboxGroup(
choices=available_crops,
label="Cultures",
value=available_crops[:5] if available_crops else []
)
analyze_btn = gr.Button("📈 Analyser", variant="primary")
with gr.Column():
filter_results = gr.Markdown()
filter_plot = gr.Plot()
analyze_btn.click(
filter_and_analyze_data,
inputs=[years_filter, plots_filter, crops_filter],
outputs=[filter_results, filter_plot]
)
# Tab 3: Weed Pressure Analysis
with gr.Tab("🌿 Pression Adventices"):
gr.Markdown("## Analyse de la pression adventices (IFT Herbicides)")
with gr.Row():
with gr.Column():
years_pressure = gr.CheckboxGroup(
choices=[str(y) for y in available_years],
label="Années à analyser",
value=[str(y) for y in available_years] if available_years else []
)
plots_pressure = gr.CheckboxGroup(
choices=available_plots,
label="Parcelles à analyser",
value=available_plots if len(available_plots) <= 10 else available_plots[:10]
)
pressure_btn = gr.Button("🔬 Analyser la Pression", variant="primary")
with gr.Column():
pressure_results = gr.Markdown()
pressure_plot = gr.Plot()
pressure_btn.click(
analyze_weed_pressure,
inputs=[years_pressure, plots_pressure],
outputs=[pressure_results, pressure_plot]
)
# Tab 4: Predictions
with gr.Tab("🔮 Prédictions"):
gr.Markdown("## Prédiction de la pression adventices")
with gr.Row():
with gr.Column():
target_years = gr.CheckboxGroup(
choices=["2025", "2026", "2027"],
label="Années à prédire",
value=["2025", "2026", "2027"]
)
max_ift = gr.Slider(
minimum=0.5,
maximum=3.0,
value=1.0,
step=0.1,
label="Seuil IFT max pour cultures sensibles"
)
predict_btn = gr.Button("🎯 Prédire", variant="primary")
with gr.Column():
prediction_results = gr.Markdown()
prediction_plot = gr.Plot()
predict_btn.click(
predict_future_weed_pressure,
inputs=[target_years, max_ift],
outputs=[prediction_results, prediction_plot]
)
# Tab 5: Crop Rotation
with gr.Tab("🔄 Rotations"):
gr.Markdown("## Impact des rotations culturales")
rotation_btn = gr.Button("📊 Analyser les Rotations", variant="primary")
rotation_results = gr.Markdown()
rotation_plot = gr.Plot()
rotation_btn.click(
analyze_crop_rotation,
outputs=[rotation_results, rotation_plot]
)
# Tab 6: Herbicide Analysis
with gr.Tab("💊 Herbicides"):
gr.Markdown("## Analyse des herbicides utilisés")
herbicide_btn = gr.Button("🧪 Analyser les Herbicides", variant="primary")
herbicide_results = gr.Markdown()
herbicide_plot = gr.Plot()
herbicide_btn.click(
analyze_herbicide_usage,
outputs=[herbicide_results, herbicide_plot]
)
gr.Markdown("""
---
**Note:** Cet outil utilise les données historiques d'interventions de la Station Expérimentale de Kerguéhennec
pour analyser la pression adventices et identifier les parcelles les plus adaptées aux cultures sensibles
comme le pois et le haricot.
""")
return app
# Launch the app
if __name__ == "__main__":
app = create_gradio_app()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True
)