Spaces:
Running
on
Zero
Running
on
Zero
| import random | |
| import os | |
| import uuid | |
| from datetime import datetime | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| from diffusers import AutoPipelineForText2Image | |
| from PIL import Image | |
| # Create permanent storage directory | |
| SAVE_DIR = "saved_images" # Gradio will handle the persistence | |
| if not os.path.exists(SAVE_DIR): | |
| os.makedirs(SAVE_DIR, exist_ok=True) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| repo_id = "black-forest-labs/FLUX.1-dev" | |
| lora_id = "seawolf2357/nsfw-detection" # LoRA model | |
| print("Loading pipeline...") | |
| # Use AutoPipelineForText2Image which has better compatibility with LoRA loading | |
| pipeline = AutoPipelineForText2Image.from_pretrained( | |
| repo_id, | |
| torch_dtype=torch.bfloat16, | |
| use_safetensors=True | |
| ) | |
| pipeline = pipeline.to(device) | |
| # Try to load the LoRA with direct method (simpler approach) | |
| print("Loading LoRA weights...") | |
| try: | |
| pipeline.load_lora_weights(lora_id) | |
| print("LoRA weights loaded successfully!") | |
| lora_loaded = True | |
| except Exception as e: | |
| print(f"Could not load LoRA weights using standard method: {e}") | |
| print("Continuing without LoRA functionality.") | |
| lora_loaded = False | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def save_generated_image(image, prompt): | |
| # Generate unique filename with timestamp | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| unique_id = str(uuid.uuid4())[:8] | |
| filename = f"{timestamp}_{unique_id}.png" | |
| filepath = os.path.join(SAVE_DIR, filename) | |
| # Save the image | |
| image.save(filepath) | |
| # Save metadata | |
| metadata_file = os.path.join(SAVE_DIR, "metadata.txt") | |
| with open(metadata_file, "a", encoding="utf-8") as f: | |
| f.write(f"{filename}|{prompt}|{timestamp}\n") | |
| return filepath | |
| # Function to ensure "nsfw" and "[trigger]" are in the prompt | |
| def process_prompt(prompt): | |
| # Add "nsfw" prefix if not already present | |
| if not prompt.lower().startswith("nsfw "): | |
| prompt = "nsfw " + prompt | |
| # Add "[trigger]" suffix if not already present | |
| if not prompt.lower().endswith("[trigger]"): | |
| if prompt.endswith(" "): | |
| prompt = prompt + "[trigger]" | |
| else: | |
| prompt = prompt + " [trigger]" | |
| return prompt | |
| def inference( | |
| prompt: str, | |
| seed: int, | |
| randomize_seed: bool, | |
| width: int, | |
| height: int, | |
| guidance_scale: float, | |
| num_inference_steps: int, | |
| lora_scale: float, | |
| progress: gr.Progress = gr.Progress(track_tqdm=True), | |
| ): | |
| # Process the prompt to ensure it has the required format | |
| processed_prompt = process_prompt(prompt) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| try: | |
| # Try with cross_attention_kwargs if LoRA was loaded successfully | |
| if lora_loaded: | |
| image = pipeline( | |
| prompt=processed_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| cross_attention_kwargs={"scale": lora_scale} | |
| ).images[0] | |
| else: | |
| # Fall back to standard generation if LoRA wasn't loaded | |
| image = pipeline( | |
| prompt=processed_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| except Exception as e: | |
| print(f"Error during inference with cross_attention_kwargs: {e}") | |
| # Fall back to standard generation without LoRA parameters | |
| image = pipeline( | |
| prompt=processed_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| # Save the generated image | |
| filepath = save_generated_image(image, processed_prompt) | |
| # Return the image, seed, and processed prompt | |
| return image, seed, processed_prompt | |
| examples = [ | |
| "A young couple, their bodies glistening with sweat, make love in the rain, the woman" | |
| ] | |
| # Brighter custom CSS with vibrant colors | |
| custom_css = """ | |
| :root { | |
| --color-primary: #FF9E6C; | |
| --color-secondary: #FFD8A9; | |
| } | |
| footer { | |
| visibility: hidden; | |
| } | |
| .gradio-container { | |
| background: linear-gradient(to right, #FFF4E0, #FFEDDB); | |
| } | |
| .title { | |
| color: #E25822 !important; | |
| font-size: 2.5rem !important; | |
| font-weight: 700 !important; | |
| text-align: center; | |
| margin: 1rem 0; | |
| text-shadow: 2px 2px 4px rgba(0,0,0,0.1); | |
| } | |
| .subtitle { | |
| color: #2B3A67 !important; | |
| font-size: 1.2rem !important; | |
| text-align: center; | |
| margin-bottom: 2rem; | |
| } | |
| .model-description { | |
| background-color: rgba(255, 255, 255, 0.7); | |
| border-radius: 10px; | |
| padding: 20px; | |
| margin: 20px 0; | |
| box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
| border-left: 5px solid #E25822; | |
| } | |
| button.primary { | |
| background-color: #E25822 !important; | |
| } | |
| button:hover { | |
| transform: translateY(-2px); | |
| box-shadow: 0 5px 15px rgba(0,0,0,0.1); | |
| } | |
| """ | |
| with gr.Blocks(css=custom_css, analytics_enabled=False) as demo: | |
| gr.HTML('<div class="title">NSFW Detection STUDIO</div>') | |
| # Main generation interface | |
| with gr.Column(elem_id="col-container"): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt (nsfw and [trigger] will be added automatically)", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Generate", variant="primary", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| processed_prompt_display = gr.Textbox(label="Processed Prompt", show_label=True) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=768, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=3.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=30, | |
| ) | |
| lora_scale = gr.Slider( | |
| label="LoRA scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[prompt], | |
| outputs=[result, seed, processed_prompt_display], | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=inference, | |
| inputs=[ | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| lora_scale, | |
| ], | |
| outputs=[result, seed, processed_prompt_display], | |
| ) | |
| demo.queue() | |
| demo.launch() |