File size: 2,696 Bytes
f9903ea
9739fd6
 
 
f9903ea
 
9739fd6
c70917b
9739fd6
 
 
 
f9903ea
c70917b
 
 
f9903ea
c70917b
 
f9903ea
c70917b
 
 
 
 
 
 
 
9739fd6
 
c70917b
 
9739fd6
 
 
 
 
 
 
 
 
 
c70917b
9739fd6
c70917b
9739fd6
 
c70917b
9739fd6
c70917b
 
 
f9903ea
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import streamlit as st
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import torch
import numpy as np

def main():
    # Load the spam detection pipeline
    spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")

    # Load the sentiment model and tokenizer directly
    sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
    tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

    # Title and description
    st.title("Email Analysis Tool")
    st.write("Enter an email body below to check if it's spam and analyze its sentiment.")

    # Text area for email input
    email_body = st.text_area("Email Body", height=200)

    # Button to trigger analysis
    if st.button("Analyze Email"):
        if email_body:
            # Step 1: Check if the email is spam
            spam_result = spam_pipeline(email_body)
            spam_label = spam_result[0]["label"]
            spam_confidence = spam_result[0]["score"]

            # Assuming "POSITIVE" means spam/phishing (adjust if incorrect)
            if spam_label == "POSITIVE":
                st.write(f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed.")
            else:
                # Step 2: Analyze sentiment for non-spam emails
                inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt')
                outputs = sentiment_model(**inputs)
                predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
                predictions = predictions.cpu().detach().numpy()
                sentiment_index = np.argmax(predictions)
                sentiment_confidence = predictions[0][sentiment_index]

                # Map index to sentiment (1 = positive, 0 = negative)
                sentiment = "Positive" if sentiment_index == 1 else "Negative"

                if sentiment == "Positive":
                    st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
                    st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
                else:  # Negative sentiment
                    st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
                    st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).")
                    st.write("**This email needs follow-up as it is not spam and has negative sentiment.**")
        else:
            st.write("Please enter an email body to analyze.")

if __name__ == "__main__":
    main()