Spaces:
Running
Running
File size: 32,904 Bytes
870ae73 98117bf 26e9df5 98117bf 870ae73 98117bf 870ae73 9767ea6 a09a9f3 456a72a a09a9f3 870ae73 a09a9f3 870ae73 33061fc 2305699 10983b6 33061fc 2305699 870ae73 eb91eac 10983b6 0f3f677 4fdee84 2403721 5f045cd 598d62d c63f002 ee9b6fd 870ae73 eb91eac c63f002 33061fc 0f3f677 4fdee84 2403721 5f045cd 598d62d c63f002 ee9b6fd 870ae73 eb91eac 870ae73 eb91eac 870ae73 ab9fd24 e59b85f ab9fd24 e59b85f ab9fd24 e59b85f ab9fd24 e59b85f ab9fd24 870ae73 ab9fd24 870ae73 5d71367 9767ea6 5d71367 456a72a 870ae73 eb91eac f3001ae 870ae73 f3001ae 870ae73 98117bf 870ae73 8cc1d0f ab9fd24 870ae73 eb91eac 870ae73 f3001ae 870ae73 96ba81c 8cc1d0f 870ae73 09a9434 8cc1d0f 96ba81c 8cc1d0f 870ae73 8cc1d0f 870ae73 8cc1d0f 870ae73 8cc1d0f 870ae73 8cc1d0f 870ae73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
# evaluate.py
import os
import json
import time
import re # <-- ADD THIS IMPORT
import pandas as pd
from typing import List, Dict, Any
from pathlib import Path
# --- ADD THIS FLAG ---
NLU_ONLY_TEST = True
# NLU_ONLY_TEST = False
# ---------------------
# --- Imports from the main application ---
try:
from alz_companion.agent import (
make_rag_chain, route_query_type, detect_tags_from_query,
answer_query, call_llm, build_or_load_vectorstore
)
from alz_companion.prompts import FAITHFULNESS_JUDGE_PROMPT
from langchain_community.vectorstores import FAISS
# --- Also move this import inside the try block for consistency ---
from langchain.schema import Document
except ImportError:
# --- START: FALLBACK DEFINITIONS ---
class FAISS:
def __init__(self): self.docstore = type('obj', (object,), {'_dict': {}})()
def add_documents(self, docs): pass
def save_local(self, path): pass
@classmethod
def from_documents(cls, docs, embeddings=None): return cls()
class Document:
def __init__(self, page_content, metadata=None):
self.page_content = page_content
self.metadata = metadata or {}
def make_rag_chain(*args, **kwargs): return lambda q, **k: {"answer": f"(Eval Fallback) You asked: {q}", "sources": []}
def route_query_type(q, **kwargs): return "general_conversation"
def detect_tags_from_query(*args, **kwargs): return {}
def answer_query(chain, q, **kwargs): return chain(q, **kwargs)
def call_llm(*args, **kwargs): return "{}"
# --- ADD FALLBACK DEFINITION FOR THE MISSING FUNCTION ---
def build_or_load_vectorstore(docs, index_path, is_personal=False):
return FAISS()
# --- END OF ADDITION ---
FAITHFULNESS_JUDGE_PROMPT = ""
print("WARNING: Could not import from alz_companion. Evaluation functions will use fallbacks.")
# --- END: FALLBACK DEFINITIONS ---
# --- LLM-as-a-Judge Prompt for Answer Correctness ---
# Aware of QUERY TYPE and ROLE
# In prompts.py or evaluate.py
ANSWER_CORRECTNESS_JUDGE_PROMPT = """You are an expert evaluator. Your task is to assess a GENERATED_ANSWER against a GROUND_TRUTH_ANSWER based on the provided context (QUERY_TYPE and USER_ROLE) and the scoring rubric below.
--- CONTEXT FOR EVALUATION ---
QUERY_TYPE: {query_type}
USER_ROLE: {role}
--- General Rules (Apply to ALL evaluations) ---
- Ignore minor differences in phrasing, tone, or structure. Your evaluation should be based on the substance of the answer, not its style.
--- Scoring Rubric ---
- 1.0 (Fully Correct): The generated answer contains all the key factual points and advice from the ground truth.
- 0.8 (Mostly Correct): The generated answer captures the main point and is factually correct, but it misses a secondary detail or a specific actionable step.
- 0.5 (Partially Correct): The generated answer is factually correct in what it states but is too generic or vague. It misses the primary advice or the most critical information.
- 0.0 (Incorrect): The generated answer is factually incorrect, contains hallucinations, or contradicts the core advice of the ground truth.
--- Specific Judging Criteria by Context ---
- If QUERY_TYPE is 'caregiving_scenario' AND USER_ROLE is 'patient':
- Apply the rubric with a focus on **emotional support and validation**. The answer does NOT need to be factually exhaustive to get a high score.
- If QUERY_TYPE is 'caregiving_scenario' AND USER_ROLE is 'caregiver':
- Apply the rubric with a focus on a **blend of empathy and practical, actionable advice**. The answer should be factually aligned with the ground truth.
- If QUERY_TYPE is 'factual_question':
- Your evaluation should be based on **factual accuracy**. Any empathetic or conversational language should be ignored.
- For all other QUERY_TYPEs:
- Default to applying the rubric with a focus on factual accuracy.
--- Examples ---
# Example for a 1.0 Score (Patient Role - Emotional Support)
GROUND_TRUTH: It's frustrating when something important goes missing. I understand why you're upset. Why don't we look for it together?
GENERATED_ANSWER: I hear how frustrating this is for you. You're not alone, let's try and find it together.
Score: 1.0
# --- NEW CAREGIVER EXAMPLE ---
# Example for a 1.0 Score (Caregiver Role - Empathy + Action)
GROUND_TRUTH: This can be very trying. Repetitive questioning happens because the brain isn't retaining new information. Try to answer in a calm, reassuring tone each time.
GENERATED_ANSWER: It can be very frustrating to answer the same question repeatedly. Remember that this is due to memory changes. The best approach is to stay patient and answer calmly.
Score: 1.0
# --- END NEW EXAMPLE ---
# Example for a 0.8 Score (Mostly Correct but Incomplete)
GROUND_TRUTH: A calm and reassuring approach is best. Instead of arguing, validate their feelings and suggest looking for the item together.
GENERATED_ANSWER: It's important to stay calm and reassure them. You should tell them you understand they are upset.
Score: 0.8
# Example for a 0.5 Score (Partially Correct but Vague)
GROUND_TRUTH: Repetitive questioning happens because the brain isn't retaining new info. Answer calmly, and consider writing the answer on a visible whiteboard.
GENERATED_ANSWER: It's important to be patient when they ask the same question over and over.
Score: 0.5
# Example for a 0.0 Score (Contradicts Core Advice)
GROUND_TRUTH: A calm and reassuring approach is best. Try not to argue about the facts.
GENERATED_ANSWER: You need to firmly correct him and explain that the carer did not steal his watch. It is important to confront these delusions directly with facts.
Score: 0.0
---
--- DATA TO EVALUATE ---
GROUND_TRUTH_ANSWER:
{ground_truth_answer}
GENERATED_ANSWER:
{generated_answer}
---
Return a single JSON object with your score based on the rubric and examples:
{{
"correctness_score": <float>
}}
"""
ORIG_ANSWER_CORRECTNESS_JUDGE_PROMPT = """You are an expert evaluator. Your task is to assess a GENERATED_ANSWER against a GROUND_TRUTH_ANSWER based on the provided QUERY_TYPE and the scoring rubric below.
QUERY_TYPE: {query_type}
--- General Rules (Apply to ALL evaluations) ---
- Ignore minor differences in phrasing, tone, or structure. Your evaluation should be based on the substance of the answer, not its style.
--- Scoring Rubric ---
- 1.0 (Fully Correct): The generated answer contains all the key factual points and advice from the ground truth.
- 0.8 (Mostly Correct): The generated answer captures the main point and is factually correct, but it misses a secondary detail or a specific actionable step.
- 0.5 (Partially Correct): The generated answer is factually correct in what it states but is too generic or vague. It misses the primary advice or the most critical information.
- 0.0 (Incorrect): The generated answer is factually incorrect, contains hallucinations, or contradicts the core advice of the ground truth.
--- Specific Judging Criteria by QUERY_TYPE ---
- If QUERY_TYPE is 'caregiving_scenario' AND the user is the patient:
- Apply the rubric with a focus on **emotional support and validation**. The answer does NOT need to be factually exhaustive to get a high score. A 1.0 score means it provided excellent emotional comfort that aligns with the ground truth's intent.
- If QUERY_TYPE is 'factual_question':
- Apply the rubric with a focus on **strict factual accuracy**. The answer must be factually aligned with the ground truth to get a high score.
- For all other QUERY_TYPEs:
- Default to applying the rubric with a focus on factual accuracy.
--- Examples ---
# Example for a 1.0 Score (Different Tone, Same Facts)
GROUND_TRUTH: For a withdrawn person, a powerful approach is personalized music therapy. Creating a playlist of music from their youth can help them reconnect.
GENERATED_ANSWER: It's hard when he's so withdrawn. You could try making a playlist of his favorite songs from when he was younger. Music is a wonderful way to connect.
Score: 1.0
# Example for a 0.8 Score (Mostly Correct but Incomplete)
GROUND_TRUTH: A calm and reassuring approach is best. Instead of arguing, validate their feelings and suggest looking for the item together.
GENERATED_ANSWER: It's important to stay calm and reassure them. You should tell them you understand they are upset.
Score: 0.8
# Example for a 0.5 Score (Partially Correct but Vague)
GROUND_TRUTH: Repetitive questioning happens because the brain isn't retaining new info. Answer calmly, and consider writing the answer on a visible whiteboard.
GENERATED_ANSWER: It's important to be patient when they ask the same question over and over.
Score: 0.5
# Example for a 0.0 Score (Contradicts Core Advice)
GROUND_TRUTH: A calm and reassuring approach is best. Try not to argue about the facts.
GENERATED_ANSWER: You need to firmly correct him and explain that the carer did not steal his watch. It is important to confront these delusions directly with facts.
Score: 0.0
---
--- DATA TO EVALUATE ---
GROUND_TRUTH_ANSWER:
{ground_truth_answer}
GENERATED_ANSWER:
{generated_answer}
---
Return a single JSON object with your score based on the rubric and examples:
{{
"correctness_score": <float>
}}
"""
test_fixtures = []
def load_test_fixtures():
"""Loads fixtures into the test_fixtures list."""
global test_fixtures
test_fixtures = []
env_path = os.environ.get("TEST_FIXTURES_PATH", "").strip()
# --- START: DEFINITIVE FIX ---
# The old code used a relative path, which is unreliable.
# This new code builds an absolute path to the fixture file based on
# the location of this (evaluate.py) script.
# script_dir = Path(__file__).parent
#default_fixture_file = script_dir / "small_test_cases_v10.jsonl"
#candidates = [env_path] if env_path else [str(default_fixture_file)]
# default_fixture_file = script_dir / "Test_Syn_Caregiving_Patient.jsonl"
# candidates = [env_path] if env_path else [str(default_fixture_file)]
# --- END: DEFINITIVE FIX ---
# candidates = [env_path] if env_path else ["conversation_test_fixtures_v10.jsonl"]
# candidates = [env_path] if env_path else ["Test_Syn_Caregiving_Patient.jsonl"]
# candidates = [env_path] if env_path else ["Test_Syn_Caregiving_Caregiver.jsonl"]
# candidates = [env_path] if env_path else ["Test_Syn_Factual.jsonl"]
# candidates = [env_path] if env_path else ["Test_Syn_Multi_Hop.jsonl"]
# candidates = [env_path] if env_path else ["Test_Syn_Gen_Chat.jsonl"]
# candidates = [env_path] if env_path else ["Test_Syn_Gen_Know.jsonl"]
# candidates = [env_path] if env_path else ["Test_Syn_Sum.jsonl"]
# candidates = [env_path] if env_path else ["small_test_cases_v10.jsonl"]
candidates = [env_path] if env_path else ["Test_Syn_Caregiving_Patient.jsonl"]
path = next((p for p in candidates if p and os.path.exists(p)), None)
if not path:
print("Warning: No test fixtures file found for evaluation.")
return
# Use the corrected v10 file if available
# if "conversation_test_fixtures_v10.jsonl" in path:
# if "Test_Syn_Caregiving_Patient.jsonl" in path:
# if "Test_Syn_Caregiving_Caregiver.jsonl" in path:
# if "Test_Syn_Factual.jsonl" in path:
# if "Test_Syn_Multi_Hop.jsonl" in path:
# if "Test_Syn_Gen_Chat.jsonl" in path:
# if "Test_Syn_Gen_Know.jsonl" in path:
# if "Test_Syn_Sum.jsonl" in path:
# if "small_test_cases_v10.jsonl" in path:
if "Test_Syn_Caregiving_Patient.jsonl" in path:
print(f"Using corrected test fixtures: {path}")
with open(path, "r", encoding="utf-8") as f:
for line in f:
try:
test_fixtures.append(json.loads(line))
except json.JSONDecodeError:
print(f"Skipping malformed JSON line in {path}")
print(f"Loaded {len(test_fixtures)} fixtures for evaluation from {path}")
def evaluate_nlu_tags(expected: Dict[str, Any], actual: Dict[str, Any], tag_key: str, expected_key_override: str = None) -> Dict[str, float]:
lookup_key = expected_key_override or tag_key
expected_raw = expected.get(lookup_key, [])
expected_set = set(expected_raw if isinstance(expected_raw, list) else [expected_raw]) if expected_raw and expected_raw != "None" else set()
actual_raw = actual.get(tag_key, [])
actual_set = set(actual_raw if isinstance(actual_raw, list) else [actual_raw]) if actual_raw and actual_raw != "None" else set()
if not expected_set and not actual_set:
return {"precision": 1.0, "recall": 1.0, "f1_score": 1.0}
true_positives = len(expected_set.intersection(actual_set))
precision = true_positives / len(actual_set) if actual_set else 0.0
recall = true_positives / len(expected_set) if expected_set else 0.0
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
return {"precision": precision, "recall": recall, "f1_score": f1_score}
def _parse_judge_json(raw_str: str) -> dict | None:
try:
start_brace = raw_str.find('{')
end_brace = raw_str.rfind('}')
if start_brace != -1 and end_brace > start_brace:
json_str = raw_str[start_brace : end_brace + 1]
return json.loads(json_str)
return None
except (json.JSONDecodeError, AttributeError):
return None
# --- NEW: helpers for categorisation and error-class labelling ---
def _categorize_test(test_id: str) -> str:
tid = (test_id or "").lower()
if "synonym" in tid: return "synonym"
if "multi_fact" in tid or "multi-hop" in tid or "multihop" in tid: return "multi_fact"
if "omission" in tid: return "omission"
if "hallucination" in tid: return "hallucination"
if "time" in tid or "temporal" in tid: return "temporal"
if "context" in tid: return "context_disambig"
return "baseline"
def _classify_error(gt: str, gen: str) -> str:
import re
gt = (gt or "").strip().lower()
gen = (gen or "").strip().lower()
if not gen:
return "empty"
if not gt:
return "hallucination" if gen else "empty"
if gt in gen:
return "paraphrase"
gt_tokens = set([t for t in re.split(r'\W+', gt) if t])
gen_tokens = set([t for t in re.split(r'\W+', gen) if t])
overlap = len(gt_tokens & gen_tokens) / max(1, len(gt_tokens))
if overlap >= 0.3:
return "omission"
return "contradiction"
# New Test Metric
def calculate_recall_at_k(retrieved_docs: List[str], expected_sources: set, k: int) -> float:
"""Calculates the fraction of relevant docs found in the top K results."""
top_k_docs = set(retrieved_docs[:k])
expected_set = set(expected_sources)
if not expected_set:
return 1.0 # If there are no expected docs, recall is trivially perfect.
found_count = len(top_k_docs.intersection(expected_set))
total_relevant = len(expected_set)
return found_count / total_relevant if total_relevant > 0 else 0.0
## NEW
# In evaluate.py
def run_comprehensive_evaluation(
vs_general: FAISS,
vs_personal: FAISS,
nlu_vectorstore: FAISS,
config: Dict[str, Any],
storage_path: Path # <-- ADD THIS PARAMETER
):
global test_fixtures
if not test_fixtures:
# The return signature is now back to 3 items.
return "No test fixtures loaded.", [], []
vs_personal_test = None
personal_context_docs = []
personal_context_file = "sample_data/1 Complaints of a Dutiful Daughter.txt"
if os.path.exists(personal_context_file):
print(f"Found personal context file for evaluation: '{personal_context_file}'")
with open(personal_context_file, "r", encoding="utf-8") as f:
content = f.read()
doc = Document(page_content=content, metadata={"source": os.path.basename(personal_context_file)})
personal_context_docs.append(doc)
else:
print(f"WARNING: Personal context file not found at '{personal_context_file}'. Factual tests will likely fail.")
vs_personal_test = build_or_load_vectorstore(
personal_context_docs,
index_path="tmp/eval_personal_index",
is_personal=True
)
print(f"Successfully created temporary personal vectorstore with {len(personal_context_docs)} document(s) for this evaluation run.")
def _norm(label: str) -> str:
label = (label or "").strip().lower()
return "factual_question" if "factual" in label else label
print("Starting comprehensive evaluation...")
results: List[Dict[str, Any]] = []
total_fixtures = len(test_fixtures)
print(f"\nπ STARTING EVALUATION on {total_fixtures} test cases...")
for i, fx in enumerate(test_fixtures):
test_id = fx.get("test_id", "N/A")
print(f"--- Processing Test Case {i+1}/{total_fixtures}: ID = {test_id} ---")
turns = fx.get("turns") or []
api_chat_history = [{"role": t.get("role"), "content": t.get("text")} for t in turns]
query = next((t["content"] for t in reversed(api_chat_history) if (t.get("role") or "user").lower() == "user"), "")
if not query: continue
print(f'Query: "{query}"')
ground_truth = fx.get("ground_truth", {})
expected_route = _norm(ground_truth.get("expected_route", "caregiving_scenario"))
expected_tags = ground_truth.get("expected_tags", {})
expected_sources = ground_truth.get("expected_sources", [])
# --- CORRECTED NLU-ONLY GUARD CLAUSE ---
if NLU_ONLY_TEST:
actual_route = _norm(route_query_type(query))
actual_tags = {}
if "caregiving_scenario" in actual_route:
actual_tags = detect_tags_from_query(
query, nlu_vectorstore=nlu_vectorstore,
behavior_options=config["behavior_tags"], emotion_options=config["emotion_tags"],
topic_options=config["topic_tags"], context_options=config["context_tags"],
)
# --- FIX: Calculate NLU F1 scores before appending results ---
behavior_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_behaviors")
emotion_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_emotion")
topic_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_topics")
context_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_contexts")
results.append({
"test_id": test_id, "title": fx.get("title", "N/A"), "user_query": query,
"actual_route": actual_route, "expected_route": expected_route,
"route_correct": 1 if actual_route == expected_route else 0,
"actual_tags": actual_tags, "expected_tags": expected_tags,
# Add the F1 scores to the results dictionary
"behavior_f1": f"{behavior_metrics['f1_score']:.2f}",
"emotion_f1": f"{emotion_metrics['f1_score']:.2f}",
"topic_f1": f"{topic_metrics['f1_score']:.2f}",
"context_f1": f"{context_metrics['f1_score']:.2f}",
# Set RAG metrics to default/None values
"raw_sources": [], "expected_sources": expected_sources, "answer": "(NLU_ONLY_TEST)",
"context_precision": None, "context_recall": None, "recall_at_5": None,
"answer_correctness": None, "faithfulness_score": None, "latency_ms": 0
})
continue # Skip to the next test case
# --- END OF CORRECTED BLOCK ---
# --- 3. FULL RAG PIPELINE (only runs if NLU_ONLY_TEST is False) ---
actual_route = _norm(route_query_type(query))
route_correct = (actual_route == expected_route)
actual_tags: Dict[str, Any] = {}
if "caregiving_scenario" in actual_route:
actual_tags = detect_tags_from_query(
query, nlu_vectorstore=nlu_vectorstore,
behavior_options=config["behavior_tags"], emotion_options=config["emotion_tags"],
topic_options=config["topic_tags"], context_options=config["context_tags"],
)
behavior_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_behaviors")
emotion_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_emotion")
topic_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_topics")
context_metrics = evaluate_nlu_tags(expected_tags, actual_tags, "detected_contexts")
final_tags = {}
if "caregiving_scenario" in actual_route:
final_tags = {
"scenario_tag": (actual_tags.get("detected_behaviors") or [None])[0],
"emotion_tag": actual_tags.get("detected_emotion"),
"topic_tag": (actual_tags.get("detected_topics") or [None])[0],
"context_tags": actual_tags.get("detected_contexts", [])
}
current_test_role = fx.get("test_role", "patient")
rag_chain = make_rag_chain(
vs_general,
vs_personal,
role=current_test_role,
for_evaluation=True
)
t0 = time.time()
response = answer_query(rag_chain, query, query_type=actual_route, chat_history=api_chat_history, **final_tags)
latency_ms = round((time.time() - t0) * 1000.0, 1)
answer_text = response.get("answer", "ERROR")
ground_truth_answer = ground_truth.get("ground_truth_answer")
category = _categorize_test(test_id)
error_class = _classify_error(ground_truth_answer, answer_text)
expected_sources_set = set(map(str, ground_truth.get("expected_sources", [])))
raw_sources = response.get("sources", [])
actual_sources_set = set(map(str, raw_sources if isinstance(raw_sources, (list, tuple)) else [raw_sources]))
print("\n" + "-"*20 + " SOURCE EVALUATION " + "-"*20)
print(f" - Expected: {sorted(list(expected_sources_set))}")
print(f" - Actual: {sorted(list(actual_sources_set))}")
true_positives = expected_sources_set.intersection(actual_sources_set)
false_positives = actual_sources_set - expected_sources_set
false_negatives = expected_sources_set - actual_sources_set
if not false_positives and not false_negatives:
print(" - Result: β
Perfect Match!")
else:
if false_positives:
print(f" - π» False Positives (hurts precision): {sorted(list(false_positives))}")
if false_negatives:
print(f" - π» False Negatives (hurts recall): {sorted(list(false_negatives))}")
print("-"*59 + "\n")
context_precision, context_recall = 0.0, 0.0
if expected_sources_set or actual_sources_set:
tp = len(expected_sources_set.intersection(actual_sources_set))
if len(actual_sources_set) > 0: context_precision = tp / len(actual_sources_set)
if len(expected_sources_set) > 0: context_recall = tp / len(expected_sources_set)
elif not expected_sources_set and not actual_sources_set:
context_precision, context_recall = 1.0, 1.0
# TURN DEBUG on Answer Correctness
# print("\n" + "-"*20 + " ANSWER & CORRECTNESS EVALUATION " + "-"*20)
# print(f" - Ground Truth Answer: {ground_truth_answer}")
# print(f" - Generated Answer: {answer_text}")
# print("-" * 59)
answer_correctness_score = None
if ground_truth_answer and "ERROR" not in answer_text:
try:
# Change this line in the answer correctness section:
judge_msg = ANSWER_CORRECTNESS_JUDGE_PROMPT.format(
ground_truth_answer=ground_truth_answer,
generated_answer=answer_text,
query_type=expected_route, # <-- Add this line
role=current_test_role # <-- ADD THIS LINE
)
# judge_msg = ANSWER_CORRECTNESS_JUDGE_PROMPT.format(ground_truth_answer=ground_truth_answer, generated_answer=answer_text)
# print(f" - Judge Prompt Sent:\n{judge_msg}")
raw_correctness = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
print(f" - Judge Raw Response: {raw_correctness}")
correctness_data = _parse_judge_json(raw_correctness)
if correctness_data and "correctness_score" in correctness_data:
answer_correctness_score = float(correctness_data["correctness_score"])
print(f" - Final Score: {answer_correctness_score}")
except Exception as e:
print(f"ERROR during answer correctness judging: {e}")
faithfulness = None
hallucination_rate = None
source_docs = response.get("source_documents", [])
if source_docs and "ERROR" not in answer_text:
context_blob = "\n---\n".join([doc.page_content for doc in source_docs])
judge_msg = FAITHFULNESS_JUDGE_PROMPT.format(query=query, answer=answer_text, sources=context_blob)
try:
if context_blob.strip():
raw = call_llm([{"role": "user", "content": judge_msg}], temperature=0.0)
data = _parse_judge_json(raw)
if data:
denom = data.get("supported", 0) + data.get("contradicted", 0) + data.get("not_enough_info", 0)
if denom > 0:
faithfulness = round(data.get("supported", 0) / denom, 3)
hallucination_rate = 1.0 - faithfulness
elif data.get("ignored", 0) > 0:
faithfulness = 1.0
hallucination_rate = 0.0
except Exception as e:
print(f"ERROR during faithfulness judging: {e}")
# --- ADD THIS LINE TO CALCULATE RECALL@5 ---
recall_at_5 = calculate_recall_at_k(raw_sources, expected_sources_set, 5)
# --- END OF ADDITION ---
# "route_correct": "β
" if route_correct else "β", "expected_route": expected_route, "actual_route": actual_route,
sources_pretty = ", ".join(sorted(s)) if (s:=actual_sources_set) else ""
results.append({
"test_id": fx.get("test_id", "N/A"), "title": fx.get("title", "N/A"),
"route_correct": 1 if route_correct else 0,
"behavior_f1": f"{behavior_metrics['f1_score']:.2f}", "emotion_f1": f"{emotion_metrics['f1_score']:.2f}",
"topic_f1": f"{topic_metrics['f1_score']:.2f}", "context_f1": f"{context_metrics['f1_score']:.2f}",
"generated_answer": answer_text, "sources": sources_pretty, "source_count": len(actual_sources_set),
"context_precision": context_precision, "context_recall": context_recall,
"faithfulness": faithfulness, "hallucination_rate": hallucination_rate,
"answer_correctness": answer_correctness_score,
"category": category, "error_class": error_class,
"recall_at_5": recall_at_5, # <-- ADD THIS LINE
"latency_ms": latency_ms
})
# --- 4. FINAL SUMMARY AND RETURN SECTION ---
if not results:
return "No valid test fixtures found to evaluate.", [], []
df = pd.DataFrame(results)
summary_text, table_rows, headers = "No valid test fixtures found to evaluate.", [], []
if not df.empty:
# Add "hallucination_rate" to this list of columns to ensure it is not dropped.
cols = [
"test_id", "title", "route_correct", "expected_route", "actual_route",
"behavior_f1", "emotion_f1", "topic_f1", "context_f1",
"generated_answer", "sources", "source_count",
"context_precision", "context_recall",
"faithfulness", "hallucination_rate",
"answer_correctness",
"category", "error_class", "latency_ms", "recall_at_5" # <-- ADD recall_at_5 HERE
]
df = df[[c for c in cols if c in df.columns]]
# --- START OF MODIFICATION ---
# pct = df["route_correct"].value_counts(normalize=True).get("β
", 0) * 100
pct = df["route_correct"].mean() * 100
to_f = lambda s: pd.to_numeric(s, errors="coerce")
# Calculate the mean for the NLU F1 scores
bf1_mean = to_f(df["behavior_f1"]).mean() * 100
ef1_mean = to_f(df["emotion_f1"]).mean() * 100
tf1_mean = to_f(df["topic_f1"]).mean() * 100
cf1_mean = to_f(df["context_f1"]).mean() * 100
# --- START: CORRECTED SUMMARY LOGIC ---
# 1. Start building the summary_text string with the common parts
summary_text = f"""## Evaluation Summary (Mode: {'NLU-Only' if NLU_ONLY_TEST else 'Full RAG'})
- **Routing Accuracy**: {pct:.2f}%
- **Behaviour F1 (avg)**: {bf1_mean:.2f}%
- **Emotion F1 (avg)**: {ef1_mean:.2f}%
- **Topic F1 (avg)**: {tf1_mean:.2f}%
- **Context F1 (avg)**: {cf1_mean:.2f}%
"""
# END of summary_text
# 2. Conditionally append the RAG-specific part to the same string
if not NLU_ONLY_TEST:
# Calculate RAG-specific metrics from the DataFrame first
context_precision_mean = to_f(df["context_precision"]).mean()
context_recall_mean = to_f(df["context_recall"]).mean()
# Calculate F1 score safely, handling potential division by zero
if (context_precision_mean + context_recall_mean) > 0:
cf1_mean = (2 * context_precision_mean * context_recall_mean) / (context_precision_mean + context_recall_mean) * 100
else:
cf1_mean = 0.0
rag_with_sources_pct = (df["source_count"] > 0).mean() * 100 if "source_count" in df else 0
# Calculate the mean for Faithfulness
# Choose to use Hallucination instead of - **RAG: Faithfulness**: {faith_mean:.1f}%
faith_mean = to_f(df["faithfulness"]).mean() * 100
# halluc_mean = (1 - to_f(df["faithfulness_score"])).mean() * 100
halluc_mean = to_f(df["hallucination_rate"]).mean() * 100
answer_correctness_mean = to_f(df["answer_correctness"]).mean() * 100
latency_mean = to_f(df["latency_ms"]).mean()
recall_at_5_mean = to_f(df["recall_at_5"]).mean() * 100
rag_summary = f"""
- **RAG: Context Precision**: {context_precision_mean * 100:.1f}%
- **RAG: Context Recall**: {context_recall_mean * 100:.1f}%
- **RAG: Recall@5**: {recall_at_5_mean:.1f}%
- **RAG Answers w/ Sources**: {rag_with_sources_pct:.1f}%
- **RAG: Hallucination Rate**: {halluc_mean:.1f}% (Lower is better)
- **RAG: Answer Correctness (LLM-judge)**: {answer_correctness_mean:.1f}%
- **RAG: Avg Latency (ms)**: {latency_mean:.1f}
"""
# END rag_summary
# Append the RAG summary to the main summary_text string
summary_text += rag_summary
# END RAG component if not NLU_ONLY_TEST:
# 3. Print the final summary text to the console
print(summary_text)
# --- START: CORRECTED CONDITIONAL PRINTOUTS ---
# 4. Only print these detailed breakdowns if in Full RAG mode
if not NLU_ONLY_TEST:
try:
cat_means = df.groupby("category")["answer_correctness"].mean().reset_index()
print("\nπ Correctness by Category:")
print(cat_means.to_string(index=False))
except Exception as e:
print(f"WARNING: Could not compute category breakdown: {e}")
try:
confusion = pd.crosstab(df.get("category", []), df.get("error_class", []),
rownames=["Category"], colnames=["Error Class"], dropna=False)
print("\nπ Error Class Distribution by Category:")
print(confusion.to_string())
except Exception as e:
print(f"WARNING: Could not build confusion matrix: {e}")
# --- END: CORRECTED CONDITIONAL PRINTOUTS ---
# 5. Prepare the other return values as usual
df_display = df.rename(columns={"context_precision": "Ctx. Precision", "context_recall": "Ctx. Recall"})
table_rows = df_display.values.tolist()
headers = df_display.columns.tolist()
else:
# Fallback return
summary_text = "No valid test fixtures found to evaluate."
table_rows, headers = [], []
return summary_text, table_rows, headers
# return summary_text, table_rows
## END |