Spaces:
Running
Running
File size: 20,399 Bytes
d39220f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
from __future__ import annotations
import os
import json
import base64
import time
import tempfile
import re # <-- ADD THIS LINE
from typing import List, Dict, Any, Optional
# OpenAI for LLM (optional)
try:
from openai import OpenAI
except Exception: # pragma: no cover
OpenAI = None # type: ignore
# LangChain & RAG
from langchain.schema import Document
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
# TTS
try:
from gtts import gTTS
except Exception: # pragma: no cover
gTTS = None # type: ignore
from .prompts import (
SYSTEM_TEMPLATE, ANSWER_TEMPLATE_CALM, ANSWER_TEMPLATE_ADQ,
SAFETY_GUARDRAILS, RISK_FOOTER, render_emotion_guidelines,
# --- Import the new decomposed NLU prompts ---
NLU_ROUTER_PROMPT, SPECIALIST_CLASSIFIER_PROMPT,
EMOTIONAL_SUPPORT_EXAMPLES, PRACTICAL_PLANNING_EXAMPLES,
# Other templates
ROUTER_PROMPT,
ANSWER_TEMPLATE_FACTUAL,
ANSWER_TEMPLATE_GENERAL_KNOWLEDGE,
ANSWER_TEMPLATE_GENERAL,
QUERY_EXPANSION_PROMPT
)
# -----------------------------
# Multimodal Processing Functions
# -----------------------------
def _openai_client() -> Optional[OpenAI]:
api_key = os.getenv("OPENAI_API_KEY", "").strip()
return OpenAI(api_key=api_key) if api_key and OpenAI else None
# In agent.py
def describe_image(image_path: str) -> str:
"""Uses a vision model to describe an image for context."""
client = _openai_client()
if not client:
return "(Image description failed: OpenAI API key not configured.)"
try:
# --- FIX START ---
# Determine the MIME type based on the file extension
extension = os.path.splitext(image_path)[1].lower()
if extension == ".png":
mime_type = "image/png"
elif extension in [".jpg", ".jpeg"]:
mime_type = "image/jpeg"
elif extension == ".gif":
mime_type = "image/gif"
elif extension == ".webp":
mime_type = "image/webp"
else:
# Default to JPEG, but this handles the most common cases
mime_type = "image/jpeg"
# --- FIX END ---
with open(image_path, "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode('utf-8')
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this image in a concise, factual way for a memory journal. Focus on people, places, and key objects. For example: 'A photo of John and Mary smiling on a bench at the park.'"},
{
"type": "image_url",
# Use the dynamically determined MIME type
"image_url": {"url": f"data:{mime_type};base64,{base64_image}"}
}
],
}
],
max_tokens=100,
)
return response.choices[0].message.content or "No description available."
except Exception as e:
return f"[Image description error: {e}]"
# -----------------------------
# NLU Classification Function
# -----------------------------
def detect_tags_from_query(query: str, behavior_options: list, emotion_options: list, topic_options: list, context_options: list, settings: dict = None) -> Dict[str, Any]:
"""Uses a two-step NLU process: Route -> Select Examples -> Classify."""
# --- STEP 1: Route the query to determine the primary goal ---
router_prompt = NLU_ROUTER_PROMPT.format(query=query)
router_messages = [{"role": "user", "content": router_prompt}]
primary_goal = call_llm(router_messages, temperature=0.0).strip().lower()
if "practical" in primary_goal:
selected_examples = PRACTICAL_PLANNING_EXAMPLES
goal_for_prompt = "Practical Planning"
else:
selected_examples = EMOTIONAL_SUPPORT_EXAMPLES
goal_for_prompt = "Emotional Support"
if settings and settings.get("debug_mode"):
print(f"\n--- NLU Router ---\nGoal: {goal_for_prompt}\n------------------\n")
# --- STEP 2: Use the Specialist Classifier with selected examples ---
behavior_str = ", ".join(f'"{opt}"' for opt in behavior_options if opt != "None")
emotion_str = ", ".join(f'"{opt}"' for opt in emotion_options if opt != "None")
topic_str = ", ".join(f'"{opt}"' for opt in topic_options if opt != "None")
context_str = ", ".join(f'"{opt}"' for opt in context_options if opt != "None")
prompt = SPECIALIST_CLASSIFIER_PROMPT.format(
primary_goal=goal_for_prompt,
examples=selected_examples,
behavior_options=behavior_str,
emotion_options=emotion_str,
topic_options=topic_str,
context_options=context_str,
query=query
)
messages = [{"role": "system", "content": "You are a helpful NLU classification assistant. Follow the instructions precisely."}, {"role": "user", "content": prompt}]
response_str = call_llm(messages, temperature=0.1)
if settings and settings.get("debug_mode"):
print(f"\n--- NLU Specialist Full Response ---\n{response_str}\n----------------------------------\n")
result_dict = {
"detected_behaviors": [], "detected_emotion": "None",
"detected_topic": "None", "detected_contexts": []
}
try:
# --- ROBUST PARSING LOGIC ---
start_brace = response_str.find('{')
end_brace = response_str.rfind('}')
if start_brace != -1 and end_brace != -1 and end_brace > start_brace:
json_str = response_str[start_brace : end_brace + 1]
result = json.loads(json_str)
behaviors = result.get("detected_behaviors")
result_dict["detected_behaviors"] = [b for b in behaviors if b in behavior_options] if behaviors else []
emotion = result.get("detected_emotion")
result_dict["detected_emotion"] = emotion if emotion in emotion_options else "None"
topic = result.get("detected_topic")
result_dict["detected_topic"] = topic if topic in topic_options else "None"
contexts = result.get("detected_contexts")
result_dict["detected_contexts"] = [c for c in contexts if c in context_options] if contexts else []
return result_dict
except (json.JSONDecodeError, AttributeError) as e:
print(f"ERROR parsing CoT JSON: {e}")
return result_dict
# -----------------------------
# Embeddings & VectorStore
# -----------------------------
def _default_embeddings():
"""Lightweight, widely available model."""
model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
return HuggingFaceEmbeddings(model_name=model_name)
def build_or_load_vectorstore(docs: List[Document], index_path: str, is_personal: bool = False) -> FAISS:
os.makedirs(os.path.dirname(index_path), exist_ok=True)
if os.path.isdir(index_path) and os.path.exists(os.path.join(index_path, "index.faiss")):
try:
return FAISS.load_local(index_path, _default_embeddings(), allow_dangerous_deserialization=True)
except Exception:
pass
if is_personal and not docs:
docs = [Document(page_content="(This is the start of the personal memory journal.)", metadata={"source": "placeholder"})]
vs = FAISS.from_documents(docs, _default_embeddings())
vs.save_local(index_path)
return vs
def texts_from_jsonl(path: str) -> List[Document]:
out: List[Document] = []
try:
with open(path, "r", encoding="utf-8") as f:
for i, line in enumerate(f):
line = line.strip()
if not line: continue
obj = json.loads(line)
txt = obj.get("text") or ""
if not isinstance(txt, str) or not txt.strip(): continue
# fix bugs by adding tags for topic and context
md = {"source": os.path.basename(path), "chunk": i}
for k in ("behaviors", "emotion", "topic_tags", "context_tags"):
if k in obj and obj[k]: # Ensure the key exists and is not empty
md[k] = obj[k]
out.append(Document(page_content=txt, metadata=md))
except Exception:
return []
return out
def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS:
docs: List[Document] = []
for p in (sample_paths or []):
try:
if p.lower().endswith(".jsonl"):
docs.extend(texts_from_jsonl(p))
else:
with open(p, "r", encoding="utf-8", errors="ignore") as fh:
docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)}))
except Exception:
continue
if not docs:
docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})]
return build_or_load_vectorstore(docs, index_path=index_path)
# -----------------------------
# LLM Call
# -----------------------------
# updated the detect_tags_from_query function to call call_llm with a new stop argument,
# but I failed to update the call_llm function itself to accept that argument.
# Now fix call_llm function:
def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6, stop: Optional[List[str]] = None) -> str:
"""Call OpenAI Chat Completions if available; else return a fallback."""
client = _openai_client()
model = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
if not client:
return "(Offline Mode: OpenAI API key not configured.)"
try:
# Prepare arguments for the API call to handle the optional 'stop' parameter
api_args = {
"model": model,
"messages": messages,
"temperature": float(temperature if temperature is not None else 0.6)
}
if stop:
api_args["stop"] = stop
resp = client.chat.completions.create(**api_args)
return (resp.choices[0].message.content or "").strip()
except Exception as e:
return f"[LLM API Error: {e}]"
# -----------------------------
# Prompting & RAG Chain
# -----------------------------
def _format_sources(docs: List[Document]) -> List[str]:
return list(set(d.metadata.get("source", "unknown") for d in docs))
# In agent.py, replace the existing make_rag_chain function with this new one to handle general & specific conversations .
# The logic for the "factual_question" path needs to be updated to perform the expansion query
def make_rag_chain(
vs_general: FAISS,
vs_personal: FAISS,
*,
role: str = "patient",
temperature: float = 0.6,
language: str = "English",
patient_name: str = "the patient",
caregiver_name: str = "the caregiver",
tone: str = "warm",
):
"""Returns a callable that performs the complete, intelligent RAG process."""
def _format_docs(docs: List[Document], default_msg: str) -> str:
if not docs: return default_msg
unique_docs = {doc.page_content: doc for doc in docs}.values()
return "\n".join([f"- {d.page_content.strip()}" for d in unique_docs])
# def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None) -> Dict[str, Any]:
def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None, topic_tag: Optional[str] = None, context_tags: Optional[List[str]] = None) -> Dict[str, Any]:
router_messages = [{"role": "user", "content": ROUTER_PROMPT.format(query=query)}]
query_type = call_llm(router_messages, temperature=0.0).strip().lower()
print(f"Query classified as: {query_type}")
system_message = SYSTEM_TEMPLATE.format(tone=tone, language=language, patient_name=patient_name or "the patient", caregiver_name=caregiver_name or "the caregiver", guardrails=SAFETY_GUARDRAILS)
messages = [{"role": "system", "content": system_message}]
messages.extend(chat_history)
# --- NEW 'general_knowledge_question' PATH ---
if "general_knowledge_question" in query_type:
user_prompt = ANSWER_TEMPLATE_GENERAL_KNOWLEDGE.format(question=query, language=language)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
return {"answer": answer, "sources": ["General Knowledge"]}
# --- END NEW PATH ---
elif "factual_question" in query_type:
# ... (This entire section for query expansion and factual search remains the same)
print(f"Performing query expansion for: '{query}'")
expansion_prompt = QUERY_EXPANSION_PROMPT.format(question=query)
expansion_response = call_llm([{"role": "user", "content": expansion_prompt}], temperature=0.1)
try:
clean_response = expansion_response.strip().replace("```json", "").replace("```", "")
expanded_queries = json.loads(clean_response)
search_queries = [query] + expanded_queries
except json.JSONDecodeError:
search_queries = [query]
print(f"Searching with queries: {search_queries}")
retriever_personal = vs_personal.as_retriever(search_kwargs={"k": 2})
retriever_general = vs_general.as_retriever(search_kwargs={"k": 2})
all_docs = []
for q in search_queries:
all_docs.extend(retriever_personal.invoke(q))
all_docs.extend(retriever_general.invoke(q))
context = _format_docs(all_docs, "(No relevant information found in the memory journal.)")
user_prompt = ANSWER_TEMPLATE_FACTUAL.format(context=context, question=query, language=language)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
return {"answer": answer, "sources": _format_sources(all_docs)}
elif "general_conversation" in query_type:
user_prompt = ANSWER_TEMPLATE_GENERAL.format(question=query, language=language)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
return {"answer": answer, "sources": []}
else: # Default to the original caregiving logic
# ... (This entire section for caregiving scenarios remains the same)
search_filter = {}
if scenario_tag and scenario_tag != "None":
search_filter["behaviors"] = scenario_tag.lower()
if emotion_tag and emotion_tag != "None":
search_filter["emotion"] = emotion_tag.lower()
# fix bug by adding topic tag and context tag
if topic_tag and topic_tag != "None": # <-- ADD THESE TWO LINES
search_filter["topic_tags"] = topic_tag.lower()
if context_tags: # <-- ADD THESE TWO LINES
search_filter["context_tags"] = {"in": [tag.lower() for tag in context_tags]}
# --- Robust Search Strategy ---
# 1. Start with a general, unfiltered search to always get text-based matches.
retriever_personal = vs_personal.as_retriever(search_kwargs={"k": 3})
retriever_general = vs_general.as_retriever(search_kwargs={"k": 3})
personal_docs = retriever_personal.invoke(query)
general_docs = retriever_general.invoke(query)
# 2. If filters exist, perform a second, more specific search and add the results.
if search_filter:
print(f"Performing additional search with filter: {search_filter}")
personal_docs.extend(vs_personal.similarity_search(query, k=3, filter=search_filter))
general_docs.extend(vs_general.similarity_search(query, k=3, filter=search_filter))
# 3. Combine and de-duplicate the results to get the best of both searches.
all_personal_docs = list({doc.page_content: doc for doc in personal_docs}.values())
all_general_docs = list({doc.page_content: doc for doc in general_docs}.values())
# 4. Define the context variables based on the new, combined results.
personal_context = _format_docs(all_personal_docs, "(No relevant personal memories found.)")
general_context = _format_docs(all_general_docs, "(No general guidance found.)")
first_emotion = None
all_docs_care = all_personal_docs + all_general_docs
# -- end of Robust Search Strategy
for doc in all_docs_care:
if "emotion" in doc.metadata and doc.metadata["emotion"]:
emotion_data = doc.metadata["emotion"]
if isinstance(emotion_data, list): first_emotion = emotion_data[0]
else: first_emotion = emotion_data
if first_emotion: break
emotions_context = render_emotion_guidelines(first_emotion or emotion_tag)
is_tagged_scenario = (scenario_tag and scenario_tag != "None") or (emotion_tag and emotion_tag != "None") or (first_emotion is not None)
template = ANSWER_TEMPLATE_ADQ if is_tagged_scenario else ANSWER_TEMPLATE_CALM
if template == ANSWER_TEMPLATE_ADQ:
user_prompt = template.format(general_context=general_context, personal_context=personal_context, question=query, scenario_tag=scenario_tag, emotions_context=emotions_context, role=role, language=language)
else:
combined_context = f"General Guidance:\n{general_context}\n\nPersonal Memories:\n{personal_context}"
user_prompt = template.format(context=combined_context, question=query, language=language)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
high_risk_scenarios = ["exit_seeking", "wandering", "elopement"]
if scenario_tag and scenario_tag.lower() in high_risk_scenarios:
answer += f"\n\n---\n{RISK_FOOTER}"
return {"answer": answer, "sources": _format_sources(all_docs_care)}
return _answer_fn
# Fix bug by adding topic tag ... how about context tag??
def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]:
if not callable(chain): return {"answer": "[Error: RAG chain is not callable]", "sources": []}
chat_history = kwargs.get("chat_history", [])
scenario_tag = kwargs.get("scenario_tag")
emotion_tag = kwargs.get("emotion_tag")
topic_tag = kwargs.get("topic_tag") # <-- ADD THIS LINE
context_tags = kwargs.get("context_tags") # <-- ADD THIS LINE
try:
return chain(question, chat_history=chat_history, scenario_tag=scenario_tag, emotion_tag=emotion_tag, topic_tag=topic_tag, context_tags=context_tags) # <-- ADD topic_tag and context_tags
except Exception as e:
print(f"ERROR in answer_query: {e}")
return {"answer": f"[Error executing chain: {e}]", "sources": []}
# -----------------------------
# TTS & Transcription
# -----------------------------
def synthesize_tts(text: str, lang: str = "en"):
if not text or gTTS is None: return None
try:
fd, path = tempfile.mkstemp(suffix=".mp3")
os.close(fd)
tts = gTTS(text=text, lang=(lang or "en"))
tts.save(path)
return path
except Exception:
return None
def transcribe_audio(filepath: str, lang: str = "en"):
client = _openai_client()
if not client:
return "[Transcription failed: API key not configured]"
api_args = {"model": "whisper-1"}
if lang and lang != "auto":
api_args["language"] = lang
with open(filepath, "rb") as audio_file:
transcription = client.audio.transcriptions.create(file=audio_file, **api_args)
return transcription.text
|