LPX55's picture
Update app_local.py
10cb4f7 verified
raw
history blame
20.4 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
from diffusers.utils import is_xformers_available
import os
import sys
import re
import gc
import json # Added json import
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import logging
#############################
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
# Model configuration
REWRITER_MODEL = "Qwen/Qwen1.5-4B-Chat" # Upgraded to 4B for better JSON handling
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
LOC = os.getenv("QIE")
# Quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
rewriter_model = AutoModelForCausalLM.from_pretrained(
REWRITER_MODEL,
torch_dtype=dtype,
device_map="auto",
quantization_config=bnb_config,
)
# Preload enhancement model at startup
print("🔄 Loading prompt enhancement model...")
rewriter_tokenizer = AutoTokenizer.from_pretrained(REWRITER_MODEL)
print("✅ Enhancement model loaded and ready!")
SYSTEM_PROMPT_EDIT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable instruction based on the user's intent and the input image.
## 1. General Principles
- Keep the rewritten instruction **concise** and clear.
- Avoid contradictions, vagueness, or unachievable instructions.
- Maintain the core logic of the original instruction; only enhance clarity and feasibility.
- Ensure new added elements or modifications align with the image's original context and art style.
## 2. Task Types
### Add, Delete, Replace:
- When the input is detailed, only refine grammar and clarity.
- For vague instructions, infer minimal but sufficient details.
- For replacement, use the format: `"Replace X with Y"`.
### Text Editing (e.g., text replacement):
- Enclose text content in quotes, e.g., `Replace "abc" with "xyz"`.
- Preserving the original structure and language—**do not translate** or alter style.
### Human Editing (e.g., change a person’s face/hair):
- Preserve core visual identity (gender, ethnic features).
- Describe expressions in subtle and natural terms.
- Maintain key clothing or styling details unless explicitly replaced.
### Style Transformation:
- If a style is specified, e.g., `Disco style`, rewrite it to encapsulate the essential visual traits.
- Use a fixed template for **coloring/restoration**:
`"Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"`
if applicable.
## 4. Output Format
Please provide the rewritten instruction in a clean `json` format as:
{
"Rewritten": "..."
}
'''
def extract_json_response(model_output: str) -> str:
"""Extract rewritten instruction from potentially messy JSON output"""
# Remove code block markers first
model_output = re.sub(r'```(?:json)?\s*', '', model_output)
try:
# Find the JSON portion in the output
start_idx = model_output.find('{')
end_idx = model_output.rfind('}')
# Fix the condition - check if brackets were found
if start_idx == -1 or end_idx == -1 or start_idx >= end_idx:
print(f"No valid JSON structure found in output. Start: {start_idx}, End: {end_idx}")
return None
# Expand to the full object including outer braces
end_idx += 1 # Include the closing brace
json_str = model_output[start_idx:end_idx]
# Handle potential markdown or other formatting
json_str = json_str.strip()
# Try to parse JSON directly first
try:
data = json.loads(json_str)
except json.JSONDecodeError as e:
print(f"Direct JSON parsing failed: {e}")
# If direct parsing fails, try cleanup
# Quote keys properly
json_str = re.sub(r'([^{}[\],\s"]+)(?=\s*:)', r'"\1"', json_str)
# Remove any trailing commas that might cause issues
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
# Try parsing again
data = json.loads(json_str)
# Extract rewritten prompt from possible key variations
possible_keys = [
"Rewritten", "rewritten", "Rewrited", "rewrited", "Rewrittent",
"Output", "output", "Enhanced", "enhanced"
]
for key in possible_keys:
if key in data:
return data[key].strip()
# Try nested path
if "Response" in data and "Rewritten" in data["Response"]:
return data["Response"]["Rewritten"].strip()
# Handle nested JSON objects (additional protection)
if isinstance(data, dict):
for value in data.values():
if isinstance(value, dict) and "Rewritten" in value:
return value["Rewritten"].strip()
# Try to find any string value that looks like an instruction
str_values = [v for v in data.values() if isinstance(v, str) and 10 < len(v) < 500]
if str_values:
return str_values[0].strip()
except Exception as e:
print(f"JSON parse error: {str(e)}")
print(f"Model output was: {model_output}")
return None
def polish_prompt(original_prompt: str) -> str:
"""Enhanced prompt rewriting using original system prompt with JSON handling"""
# Format as Qwen chat
messages = [
{"role": "system", "content": SYSTEM_PROMPT_EDIT},
{"role": "user", "content": original_prompt}
]
text = rewriter_tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = rewriter_tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = rewriter_model.generate(
**model_inputs,
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.8,
repetition_penalty=1.1,
no_repeat_ngram_size=3,
pad_token_id=rewriter_tokenizer.eos_token_id
)
# Extract and clean response
enhanced = rewriter_tokenizer.decode(
generated_ids[0][model_inputs.input_ids.shape[1]:],
skip_special_tokens=True
).strip()
print(f"Model raw output: {enhanced}") # Debug logging
# Try to extract JSON content
rewritten_prompt = extract_json_response(enhanced)
if rewritten_prompt:
# Clean up remaining artifacts
rewritten_prompt = re.sub(r'(Replace|Change|Add) "(.*?)"', r'\1 \2', rewritten_prompt)
rewritten_prompt = rewritten_prompt.replace('\\"', '"').replace('\\n', ' ')
return rewritten_prompt
else:
# Fallback: try to extract from code blocks or just return cleaned content
if '```' in enhanced:
parts = enhanced.split('```')
if len(parts) >= 2:
rewritten_prompt = parts[1].strip()
else:
rewritten_prompt = enhanced
else:
rewritten_prompt = enhanced
# Basic cleanup
rewritten_prompt = re.sub(r'\s\s+', ' ', rewritten_prompt).strip()
if ': ' in rewritten_prompt:
rewritten_prompt = rewritten_prompt.split(': ', 1)[-1].strip()
return rewritten_prompt[:200] if rewritten_prompt else original_prompt
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# Load main image editing pipeline
pipe = QwenImageEditPipeline.from_pretrained(
LOC,
scheduler=scheduler,
torch_dtype=dtype
).to(device)
# Load LoRA weights for acceleration
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
)
pipe.fuse_lora()
if is_xformers_available():
pipe.enable_xformers_memory_efficient_attention()
else:
print("xformers not available")
# def unload_rewriter():
# """Clear enhancement model from memory"""
# global rewriter_tokenizer, rewriter_model
# if rewriter_model:
# del rewriter_tokenizer, rewriter_model
# rewriter_tokenizer = None
# rewriter_model = None
# torch.cuda.empty_cache()
# gc.collect()
@spaces.GPU()
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=4.0,
num_inference_steps=8,
rewrite_prompt=True,
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""Image editing endpoint with optimized prompt handling"""
# Resize image to max 1024px on longest side
def resize_image(pil_image, max_size=1024):
"""Resize image to maximum dimension of 1024px while maintaining aspect ratio"""
try:
if pil_image is None:
return pil_image
width, height = pil_image.size
max_dimension = max(width, height)
if max_dimension <= max_size:
return pil_image # No resize needed
# Calculate new dimensions maintaining aspect ratio
scale = max_size / max_dimension
new_width = int(width * scale)
new_height = int(height * scale)
# Resize image
resized_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
print(f"📝 Image resized from {width}x{height} to {new_width}x{new_height}")
return resized_image
except Exception as e:
print(f"⚠️ Image resize failed: {e}")
return pil_image # Return original if resize fails
# Add noise function for batch variation
def add_noise_to_image(pil_image, noise_level=0.05):
"""Add slight noise to image to create variation in outputs"""
try:
if pil_image is None:
return pil_image
img_array = np.array(pil_image).astype(np.float32) / 255.0
noise = np.random.normal(0, noise_level, img_array.shape)
noisy_array = img_array + noise
# Clip values to valid range
noisy_array = np.clip(noisy_array, 0, 1)
# Convert back to PIL
noisy_array = (noisy_array * 255).astype(np.uint8)
return Image.fromarray(noisy_array)
except Exception as e:
print(f"Warning: Could not add noise to image: {e}")
return pil_image # Return original if noise addition fails
# Resize input image first
image = resize_image(image, max_size=1024)
original_prompt = prompt
prompt_info = ""
# Handle prompt rewriting
if rewrite_prompt:
try:
enhanced_instruction = polish_prompt(original_prompt)
if enhanced_instruction and enhanced_instruction != original_prompt:
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #4CAF50; background: #f5f9fe'>"
f"<h4 style='margin-top: 0;'>🚀 Prompt Enhancement</h4>"
f"<p><strong>Original:</strong> {original_prompt}</p>"
f"<p><strong style='color:#2E7D32;'>Enhanced:</strong> {enhanced_instruction}</p>"
f"</div>"
)
prompt = enhanced_instruction
else:
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF9800; background: #fff8f0'>"
f"<h4 style='margin-top: 0;'>📝 Prompt Enhancement</h4>"
f"<p>No enhancement applied or enhancement failed</p>"
f"</div>"
)
except Exception as e:
print(f"Prompt enhancement error: {str(e)}") # Debug logging
gr.Warning(f"Prompt enhancement failed: {str(e)}")
prompt_info = (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #FF5252; background: #fef5f5'>"
f"<h4 style='margin-top: 0;'>⚠️ Enhancement Not Applied</h4>"
f"<p>Using original prompt. Error: {str(e)[:100]}</p>"
f"</div>"
)
else:
prompt_info = (
f"<div style='margin:10px; padding:10px; border-radius:8px; background: #f8f9fa'>"
f"<h4 style='margin-top: 0;'>📝 Original Prompt</h4>"
f"<p>{original_prompt}</p>"
f"</div>"
)
# Set base seed for reproducibility
base_seed = seed if not randomize_seed else random.randint(0, MAX_SEED)
try:
# Generate images with variation for batch mode
if num_images_per_prompt > 1:
edited_images = []
for i in range(num_images_per_prompt):
# Create unique seed for each image
generator = torch.Generator(device=device).manual_seed(base_seed + i*1000)
# Add slight noise to the image for variation
noisy_image = add_noise_to_image(image, noise_level=0.05 + i*0.003)
# Slightly vary guidance scale
varied_guidance = true_guidance_scale + random.uniform(-0.5, 0.5)
varied_guidance = max(1.0, min(10.0, varied_guidance))
# Generate single image with variations
result = pipe(
image=noisy_image,
prompt=prompt,
negative_prompt=" ",
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=varied_guidance,
num_images_per_prompt=1
).images
edited_images.extend(result)
else:
# Single image generation (unchanged)
generator = torch.Generator(device=device).manual_seed(base_seed)
edited_images = pipe(
image=image,
prompt=prompt,
negative_prompt=" ",
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt
).images
# Clear cache after generation
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
return edited_images, base_seed, prompt_info
except Exception as e:
# Clear cache on error
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
gr.Error(f"Image generation failed: {str(e)}")
return [], base_seed, (
f"<div style='margin:10px; padding:15px; border-radius:8px; border-left:4px solid #dd2c00; background: #fef5f5'>"
f"<h4 style='margin-top: 0;'>⚠️ Processing Error</h4>"
f"<p>{str(e)[:200]}</p>"
f"</div>"
)
with gr.Blocks(title="Qwen Image Edit - Fast Lightning Mode w/ Batch") as demo:
gr.Markdown("""
<div style="text-align: center; background: linear-gradient(to right, #3a7bd5, #00d2ff); color: white; padding: 20px; border-radius: 8px;">
<h1 style="margin-bottom: 5px;">⚡️ Qwen-Image-Edit Lightning</h1>
<p>✨ 8-step inferencing with lightx2v's LoRA.</p>
<p>📝 Local Prompt Enhancement, Batched Multi-image Generation</p>
</div>
""")
with gr.Row(equal_height=True):
# Input Column
with gr.Column(scale=1):
input_image = gr.Image(
label="Source Image",
type="pil",
height=300
)
prompt = gr.Textbox(
label="Edit Instructions",
placeholder="e.g. Replace the background with a beach sunset...",
lines=2,
max_lines=4
)
with gr.Row():
rewrite_toggle = gr.Checkbox(
label="Enable Prompt Enhancement",
value=True,
interactive=True
)
run_button = gr.Button(
"Generate Edits",
variant="primary",
min_width=120
)
with gr.Accordion("Advanced Parameters", open=False):
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42
)
randomize_seed = gr.Checkbox(
label="Random Seed",
value=True
)
with gr.Row():
true_guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=4.0
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=4,
maximum=16,
step=1,
value=8
)
num_images_per_prompt = gr.Slider(
label="Output Count",
minimum=1,
maximum=4,
step=1,
value=2
)
# Output Column
with gr.Column(scale=2):
result = gr.Gallery(
label="Edited Images",
columns=lambda x: min(x, 2),
height=500,
object_fit="cover",
preview=True
)
prompt_info = gr.HTML(
value="<div style='padding:15px; margin-top:15px'>"
"Prompt details will appear after generation</div>"
)
# # Examples
# gr.Examples(
# examples=[
# "Change the background scene to a rooftop bar at night",
# "Transform to pixel art style with 8-bit graphics",
# "Replace all text with 'Qwen AI' in futuristic font"
# ],
# inputs=[prompt],
# label="Sample Instructions",
# cache_examples=True
# )
# Set up processing
inputs = [
input_image,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
rewrite_toggle,
num_images_per_prompt
]
outputs = [result, seed, prompt_info]
run_button.click(
fn=infer,
inputs=inputs,
outputs=outputs
)
prompt.submit(
fn=infer,
inputs=inputs,
outputs=outputs
)
demo.queue(max_size=5).launch()