|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
if is_xformers_available(): |
|
|
import xformers |
|
|
import xformers.ops |
|
|
else: |
|
|
xformers = None |
|
|
|
|
|
class HairAttnProcessor(nn.Module): |
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, use_resampler=False): |
|
|
super().__init__() |
|
|
|
|
|
self.hidden_size = hidden_size |
|
|
self.cross_attention_dim = cross_attention_dim |
|
|
self.scale = scale |
|
|
self.use_resampler = use_resampler |
|
|
if self.use_resampler: |
|
|
self.resampler = Resampler(query_dim=hidden_size) |
|
|
self.to_k_SSR = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
self.to_v_SSR = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
attn, |
|
|
hidden_states, |
|
|
encoder_hidden_states=None, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
): |
|
|
residual = hidden_states |
|
|
|
|
|
if attn.spatial_norm is not None: |
|
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
|
|
if input_ndim == 4: |
|
|
batch_size, channel, height, width = hidden_states.shape |
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
batch_size, sequence_length, _ = ( |
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
) |
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
if attn.group_norm is not None: |
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
|
encoder_hidden_states = hidden_states |
|
|
elif attn.norm_cross: |
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
|
|
|
split_num = encoder_hidden_states.shape[1] // 2 |
|
|
encoder_hidden_states, _hidden_states = encoder_hidden_states[:, :split_num, |
|
|
:], encoder_hidden_states[:, split_num:, :] |
|
|
|
|
|
if self.use_resampler: |
|
|
_hidden_states = self.resampler(_hidden_states) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
query = attn.head_to_batch_dim(query) |
|
|
key = attn.head_to_batch_dim(key) |
|
|
value = attn.head_to_batch_dim(value) |
|
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
_key = self.to_k_SSR(_hidden_states) |
|
|
_value = self.to_v_SSR(_hidden_states) |
|
|
|
|
|
_key = attn.head_to_batch_dim(_key) |
|
|
_value = attn.head_to_batch_dim(_value) |
|
|
|
|
|
_attention_probs = attn.get_attention_scores(query, _key, None) |
|
|
_hidden_states = torch.bmm(_attention_probs, _value) |
|
|
_hidden_states = attn.batch_to_head_dim(_hidden_states) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = hidden_states + self.scale * _hidden_states |
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
if input_ndim == 4: |
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
if attn.residual_connection: |
|
|
hidden_states = hidden_states + residual |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class HairAttnProcessor2_0(torch.nn.Module): |
|
|
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, use_resampler=False): |
|
|
super().__init__() |
|
|
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
|
|
self.hidden_size = hidden_size |
|
|
self.cross_attention_dim = cross_attention_dim |
|
|
self.scale = scale |
|
|
self.use_resampler = use_resampler |
|
|
if self.use_resampler: |
|
|
self.resampler = Resampler(query_dim=hidden_size) |
|
|
self.to_k_SSR = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
self.to_v_SSR = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
attn, |
|
|
hidden_states, |
|
|
encoder_hidden_states=None, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
): |
|
|
residual = hidden_states |
|
|
|
|
|
if attn.spatial_norm is not None: |
|
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
|
|
if input_ndim == 4: |
|
|
batch_size, channel, height, width = hidden_states.shape |
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
batch_size, sequence_length, _ = ( |
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
|
|
if attn.group_norm is not None: |
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
|
encoder_hidden_states = hidden_states |
|
|
elif attn.norm_cross: |
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
|
|
|
split_num = encoder_hidden_states.shape[1] // 2 |
|
|
encoder_hidden_states, _hidden_states = encoder_hidden_states[:, :split_num, |
|
|
:], encoder_hidden_states[:, split_num:, :] |
|
|
|
|
|
if self.use_resampler: |
|
|
_hidden_states = self.resampler(_hidden_states) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
inner_dim = key.shape[-1] |
|
|
head_dim = inner_dim // attn.heads |
|
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
|
) |
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
_hidden_states = _hidden_states.to(self.to_k_SSR.weight.dtype) |
|
|
_key = self.to_k_SSR(_hidden_states) |
|
|
_value = self.to_v_SSR(_hidden_states) |
|
|
|
|
|
_key = _key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
_value = _value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
_hidden_states = F.scaled_dot_product_attention( |
|
|
query.to(self.to_k_SSR.weight.dtype), _key, _value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
|
) |
|
|
|
|
|
_hidden_states = _hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
|
_hidden_states = _hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = hidden_states + self.scale * _hidden_states |
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
if input_ndim == 4: |
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
if attn.residual_connection: |
|
|
hidden_states = hidden_states + residual |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
|
|
|
class AttnProcessor(nn.Module): |
|
|
r""" |
|
|
Default processor for performing attention-related computations. |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
hidden_size=None, |
|
|
cross_attention_dim=None, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
attn, |
|
|
hidden_states, |
|
|
encoder_hidden_states=None, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
): |
|
|
residual = hidden_states |
|
|
|
|
|
if attn.spatial_norm is not None: |
|
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
|
|
if input_ndim == 4: |
|
|
batch_size, channel, height, width = hidden_states.shape |
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
batch_size, sequence_length, _ = ( |
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
) |
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
if attn.group_norm is not None: |
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
|
encoder_hidden_states = hidden_states |
|
|
elif attn.norm_cross: |
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
query = attn.head_to_batch_dim(query) |
|
|
key = attn.head_to_batch_dim(key) |
|
|
value = attn.head_to_batch_dim(value) |
|
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
if input_ndim == 4: |
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
if attn.residual_connection: |
|
|
hidden_states = hidden_states + residual |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
class AttnProcessor2_0(torch.nn.Module): |
|
|
r""" |
|
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
hidden_size=None, |
|
|
cross_attention_dim=None, |
|
|
): |
|
|
super().__init__() |
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
|
|
def __call__( |
|
|
self, |
|
|
attn, |
|
|
hidden_states, |
|
|
encoder_hidden_states=None, |
|
|
attention_mask=None, |
|
|
temb=None, |
|
|
): |
|
|
residual = hidden_states |
|
|
|
|
|
if attn.spatial_norm is not None: |
|
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
|
|
if input_ndim == 4: |
|
|
batch_size, channel, height, width = hidden_states.shape |
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
batch_size, sequence_length, _ = ( |
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
) |
|
|
|
|
|
if attention_mask is not None: |
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
|
|
if attn.group_norm is not None: |
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
|
|
if encoder_hidden_states is None: |
|
|
encoder_hidden_states = hidden_states |
|
|
elif attn.norm_cross: |
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
inner_dim = key.shape[-1] |
|
|
head_dim = inner_dim // attn.heads |
|
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
|
) |
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
|
|
if input_ndim == 4: |
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
if attn.residual_connection: |
|
|
hidden_states = hidden_states + residual |
|
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
|
|
return hidden_states |