File size: 17,253 Bytes
3c14dbd
 
f69c49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c14dbd
 
 
 
200ce84
 
3c14dbd
 
 
 
596bb4b
3c14dbd
 
 
 
 
 
 
596bb4b
 
 
 
 
 
3c14dbd
 
 
 
596bb4b
3c14dbd
 
 
 
 
 
 
 
 
200ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
'''

import altair as alt
import numpy as np
import pandas as pd
import streamlit as st

"""
# Welcome to Streamlit!

Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
forums](https://discuss.streamlit.io).

In the meantime, below is an example of what you can do with just a few lines of code:
"""

num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)

indices = np.linspace(0, 1, num_points)
theta = 2 * np.pi * num_turns * indices
radius = indices

x = radius * np.cos(theta)
y = radius * np.sin(theta)

df = pd.DataFrame({
    "x": x,
    "y": y,
    "idx": indices,
    "rand": np.random.randn(num_points),
})

st.altair_chart(alt.Chart(df, height=700, width=700)
    .mark_point(filled=True)
    .encode(
        x=alt.X("x", axis=None),
        y=alt.Y("y", axis=None),
        color=alt.Color("idx", legend=None, scale=alt.Scale()),
        size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
    ))

'''


'''
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
import os

st.set_page_config(page_title="FinBERT Sentiment", layout="centered")
st.title("💰 FinBERT: Financial Sentiment Analysis")
st.markdown("Модель: `yiyanghkust/finbert-tone` — обучена на финансовых текстах")

@st.cache_resource
def load_model():
    # Установка кастомного пути к кэшу
    cache_dir = "/tmp/huggingface"
    os.makedirs(cache_dir, exist_ok=True)

    tokenizer = AutoTokenizer.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir)
    model = AutoModelForSequenceClassification.from_pretrained("yiyanghkust/finbert-tone", cache_dir=cache_dir)
    return tokenizer, model

tokenizer, model = load_model()

text = st.text_area("Введите финансовую новость или отчёт:", height=150)

if st.button("Анализировать тональность") and text.strip():
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
        probs = F.softmax(outputs.logits, dim=1).squeeze()

    labels = ["📉 Negative", "😐 Neutral", "📈 Positive"]
    for label, prob in zip(labels, probs):
        st.write(f"**{label}:** {prob.item():.3f}")

'''


import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
import os
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime
import re

# Page configuration
st.set_page_config(
    page_title="FinBERT Sentiment Analyzer",
    page_icon="💰",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better styling
st.markdown("""
<style>
    .main-header {
        text-align: center;
        color: #1f77b4;
        margin-bottom: 2rem;
    }
    .sentiment-card {
        padding: 1rem;
        border-radius: 10px;
        margin: 0.5rem 0;
        text-align: center;
    }
    .negative { background-color: #ffebee; border-left: 5px solid #f44336; }
    .neutral { background-color: #f3e5f5; border-left: 5px solid #9c27b0; }
    .positive { background-color: #e8f5e8; border-left: 5px solid #4caf50; }
    .metric-container {
        background-color: #f8f9fa;
        padding: 1rem;
        border-radius: 10px;
        margin: 1rem 0;
    }
</style>
""", unsafe_allow_html=True)

st.markdown('<h1 class="main-header">💰 FinBERT: Financial Sentiment Analysis</h1>', unsafe_allow_html=True)

# Sidebar
with st.sidebar:
    st.header("ℹ️ About")
    st.markdown("""
    **Model:** `yiyanghkust/finbert-tone`  
    Trained specifically on financial texts for accurate sentiment analysis of:
    - Financial news
    - Earnings reports  
    - Market analysis
    - Investment research
    """)
    
    st.header("⚙️ Settings")
    confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, help="Minimum confidence for sentiment classification")
    show_probabilities = st.checkbox("Show All Probabilities", value=True)
    batch_analysis = st.checkbox("Enable Batch Analysis", help="Analyze multiple texts at once")

@st.cache_resource(show_spinner=False)
def load_model():
    """Load FinBERT model and tokenizer with error handling"""
    try:
        cache_dir = "/tmp/huggingface"
        os.makedirs(cache_dir, exist_ok=True)
        
        with st.spinner("Loading FinBERT model... This may take a moment."):
            tokenizer = AutoTokenizer.from_pretrained(
                "yiyanghkust/finbert-tone", 
                cache_dir=cache_dir
            )
            model = AutoModelForSequenceClassification.from_pretrained(
                "yiyanghkust/finbert-tone", 
                cache_dir=cache_dir
            )
        return tokenizer, model, None
    except Exception as e:
        return None, None, str(e)

def analyze_sentiment(text, tokenizer, model):
    """Analyze sentiment with error handling and additional metrics"""
    try:
        # Preprocess text
        text = re.sub(r'\s+', ' ', text.strip())
        
        inputs = tokenizer(
            text, 
            return_tensors="pt", 
            truncation=True, 
            padding=True,
            max_length=512
        )
        
        with torch.no_grad():
            outputs = model(**inputs)
            probs = F.softmax(outputs.logits, dim=1).squeeze()
        
        labels = ["Negative", "Neutral", "Positive"]
        sentiment_scores = {label: prob.item() for label, prob in zip(labels, probs)}
        
        # Determine primary sentiment
        max_prob = max(sentiment_scores.values())
        primary_sentiment = max(sentiment_scores, key=sentiment_scores.get)
        
        return sentiment_scores, primary_sentiment, max_prob, None
    except Exception as e:
        return None, None, None, str(e)

def create_sentiment_chart(sentiment_scores):
    """Create an interactive sentiment visualization"""
    labels = list(sentiment_scores.keys())
    values = list(sentiment_scores.values())
    colors = ['#f44336', '#9c27b0', '#4caf50']
    
    fig = go.Figure(data=[
        go.Bar(
            x=labels,
            y=values,
            marker_color=colors,
            text=[f'{v:.3f}' for v in values],
            textposition='auto',
        )
    ])
    
    fig.update_layout(
        title="Sentiment Analysis Results",
        xaxis_title="Sentiment",
        yaxis_title="Confidence Score",
        yaxis=dict(range=[0, 1]),
        height=400,
        showlegend=False
    )
    
    return fig

# Load model
tokenizer, model, error = load_model()

if error:
    st.error(f"Failed to load model: {error}")
    st.stop()

if tokenizer and model:
    st.success("✅ FinBERT model loaded successfully!")
    
    # Main analysis interface
    if not batch_analysis:
        st.header("📝 Single Text Analysis")
        text = st.text_area(
            "Enter financial news, report, or analysis:",
            height=150,
            placeholder="Example: The company reported strong quarterly earnings with revenue growth of 15% year-over-year..."
        )
        
        col1, col2, col3 = st.columns([1, 1, 2])
        with col1:
            analyze_button = st.button("🔍 Analyze Sentiment", type="primary")
        with col2:
            clear_button = st.button("🗑️ Clear")
        
        if clear_button:
            st.rerun()
        
        if analyze_button and text.strip():
            with st.spinner("Analyzing sentiment..."):
                sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
            
            if error:
                st.error(f"Analysis failed: {error}")
            else:
                # Results section
                st.header("📊 Analysis Results")
                
                # Primary sentiment with confidence
                col1, col2, col3 = st.columns(3)
                
                sentiment_emojis = {"Negative": "📉", "Neutral": "😐", "Positive": "📈"}
                sentiment_colors = {"Negative": "red", "Neutral": "gray", "Positive": "green"}
                
                with col1:
                    st.metric(
                        "Primary Sentiment",
                        f"{sentiment_emojis[primary_sentiment]} {primary_sentiment}",
                        delta=f"{confidence:.1%} confidence"
                    )
                
                with col2:
                    st.metric(
                        "Text Length",
                        f"{len(text)} characters",
                        delta=f"{len(text.split())} words"
                    )
                
                with col3:
                    reliability = "High" if confidence > 0.7 else "Medium" if confidence > 0.5 else "Low"
                    st.metric("Reliability", reliability)
                
                # Detailed probabilities
                if show_probabilities:
                    st.subheader("Detailed Sentiment Scores")
                    
                    for sentiment, score in sentiment_scores.items():
                        emoji = sentiment_emojis[sentiment]
                        color = "negative" if sentiment == "Negative" else "neutral" if sentiment == "Neutral" else "positive"
                        
                        st.markdown(f"""
                        <div class="sentiment-card {color}">
                            <h4>{emoji} {sentiment}</h4>
                            <h2>{score:.3f}</h2>
                            <div style="width: 100%; background-color: #ddd; border-radius: 25px;">
                                <div style="width: {score*100}%; height: 10px; background-color: {sentiment_colors[sentiment]}; border-radius: 25px;"></div>
                            </div>
                        </div>
                        """, unsafe_allow_html=True)
                
                # Visualization
                st.subheader("📈 Sentiment Visualization")
                fig = create_sentiment_chart(sentiment_scores)
                st.plotly_chart(fig, use_container_width=True)
    
    else:
        # Batch analysis mode
        st.header("📊 Batch Analysis")
        
        # Option to upload file or enter multiple texts
        analysis_method = st.radio(
            "Choose analysis method:",
            ["Enter multiple texts", "Upload CSV file"]
        )
        
        if analysis_method == "Enter multiple texts":
            texts_input = st.text_area(
                "Enter multiple texts (one per line):",
                height=200,
                placeholder="Text 1: Company reports strong earnings...\nText 2: Market volatility increases...\nText 3: New regulations impact sector..."
            )
            
            if st.button("🔍 Analyze All Texts") and texts_input.strip():
                texts = [text.strip() for text in texts_input.split('\n') if text.strip()]
                
                if texts:
                    results = []
                    progress_bar = st.progress(0)
                    
                    for i, text in enumerate(texts):
                        sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
                        
                        if not error:
                            results.append({
                                'Text': text[:100] + '...' if len(text) > 100 else text,
                                'Primary Sentiment': primary_sentiment,
                                'Confidence': confidence,
                                'Negative': sentiment_scores['Negative'],
                                'Neutral': sentiment_scores['Neutral'],
                                'Positive': sentiment_scores['Positive']
                            })
                        
                        progress_bar.progress((i + 1) / len(texts))
                    
                    if results:
                        df = pd.DataFrame(results)
                        
                        # Summary statistics
                        st.subheader("📈 Batch Analysis Summary")
                        col1, col2, col3 = st.columns(3)
                        
                        with col1:
                            positive_count = len(df[df['Primary Sentiment'] == 'Positive'])
                            st.metric("Positive Texts", positive_count, f"{positive_count/len(df)*100:.1f}%")
                        
                        with col2:
                            neutral_count = len(df[df['Primary Sentiment'] == 'Neutral'])
                            st.metric("Neutral Texts", neutral_count, f"{neutral_count/len(df)*100:.1f}%")
                        
                        with col3:
                            negative_count = len(df[df['Primary Sentiment'] == 'Negative'])
                            st.metric("Negative Texts", negative_count, f"{negative_count/len(df)*100:.1f}%")
                        
                        # Results table
                        st.subheader("📋 Detailed Results")
                        st.dataframe(df, use_container_width=True)
                        
                        # Download results
                        csv = df.to_csv(index=False)
                        st.download_button(
                            "📥 Download Results (CSV)",
                            csv,
                            f"sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
                            "text/csv"
                        )
        
        elif analysis_method == "Upload CSV file":
            uploaded_file = st.file_uploader(
                "Choose a CSV file with a 'text' column",
                type=['csv']
            )
            
            if uploaded_file is not None:
                try:
                    df = pd.read_csv(uploaded_file)
                    
                    if 'text' not in df.columns:
                        st.error("CSV file must contain a 'text' column")
                    else:
                        st.write(f"Loaded {len(df)} texts from CSV file")
                        st.dataframe(df.head(), use_container_width=True)
                        
                        if st.button("🔍 Analyze CSV Data"):
                            results = []
                            progress_bar = st.progress(0)
                            
                            for i, row in df.iterrows():
                                text = str(row['text'])
                                sentiment_scores, primary_sentiment, confidence, error = analyze_sentiment(text, tokenizer, model)
                                
                                if not error:
                                    result_row = row.to_dict()
                                    result_row.update({
                                        'Primary Sentiment': primary_sentiment,
                                        'Confidence': confidence,
                                        'Negative Score': sentiment_scores['Negative'],
                                        'Neutral Score': sentiment_scores['Neutral'],
                                        'Positive Score': sentiment_scores['Positive']
                                    })
                                    results.append(result_row)
                                
                                progress_bar.progress((i + 1) / len(df))
                            
                            if results:
                                results_df = pd.DataFrame(results)
                                
                                # Display results
                                st.subheader("📋 Analysis Results")
                                st.dataframe(results_df, use_container_width=True)
                                
                                # Download enhanced results
                                csv = results_df.to_csv(index=False)
                                st.download_button(
                                    "📥 Download Enhanced Results (CSV)",
                                    csv,
                                    f"enhanced_sentiment_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
                                    "text/csv"
                                )
                
                except Exception as e:
                    st.error(f"Error processing CSV file: {str(e)}")

# Footer
st.markdown("---")
st.markdown("""
<div style='text-align: center; color: #666; margin-top: 2rem;'>
    <p>💡 <strong>Tip:</strong> For best results, use complete sentences and financial context</p>
    <p>Built with Streamlit • Powered by FinBERT</p>
</div>
""", unsafe_allow_html=True)