|
|
|
|
|
import os |
|
|
import asyncio |
|
|
import httpx |
|
|
import traceback |
|
|
import time |
|
|
from datetime import datetime |
|
|
import ccxt |
|
|
import numpy as np |
|
|
import logging |
|
|
from typing import List, Dict, Any |
|
|
import pandas as pd |
|
|
|
|
|
try: |
|
|
import pandas_ta as ta |
|
|
except ImportError: |
|
|
print("⚠️ مكتبة pandas_ta غير موجودة، فلتر الغربلة المتقدم سيفشل.") |
|
|
ta = None |
|
|
|
|
|
from ml_engine.indicators import AdvancedTechnicalAnalyzer |
|
|
from ml_engine.monte_carlo import MonteCarloAnalyzer |
|
|
|
|
|
from ml_engine.patterns import ChartPatternAnalyzer |
|
|
|
|
|
logging.getLogger("httpx").setLevel(logging.WARNING) |
|
|
logging.getLogger("httpcore").setLevel(logging.WARNING) |
|
|
|
|
|
class DataManager: |
|
|
|
|
|
def __init__(self, contracts_db, whale_monitor, r2_service=None): |
|
|
self.contracts_db = contracts_db or {} |
|
|
self.whale_monitor = whale_monitor |
|
|
self.r2_service = r2_service |
|
|
|
|
|
try: |
|
|
self.exchange = ccxt.kucoin({ |
|
|
'sandbox': False, |
|
|
'enableRateLimit': True, |
|
|
'timeout': 30000, |
|
|
'verbose': False, |
|
|
}) |
|
|
print("✅ تم تهيئة اتصال KuCoin بنجاح") |
|
|
except Exception as e: |
|
|
print(f"❌ فشل تهيئة اتصال KuCoin: {e}") |
|
|
self.exchange = None |
|
|
|
|
|
self.http_client = None |
|
|
self.market_cache = {} |
|
|
self.last_market_load = None |
|
|
|
|
|
self.technical_analyzer = AdvancedTechnicalAnalyzer() |
|
|
self.monte_carlo_analyzer = MonteCarloAnalyzer() |
|
|
self.pattern_analyzer = None |
|
|
|
|
|
async def initialize(self): |
|
|
self.http_client = httpx.AsyncClient(timeout=30.0) |
|
|
await self._load_markets() |
|
|
|
|
|
|
|
|
print(" > [DataManager] تهيئة محرك الأنماط V8 (ML-Based)...") |
|
|
try: |
|
|
self.pattern_analyzer = ChartPatternAnalyzer(r2_service=self.r2_service) |
|
|
await self.pattern_analyzer.initialize() |
|
|
except Exception as e: |
|
|
print(f"❌ [DataManager] فشل تهيئة محرك الأنماط V8: {e}") |
|
|
|
|
|
self.pattern_analyzer = ChartPatternAnalyzer(r2_service=None) |
|
|
|
|
|
|
|
|
print("✅ DataManager initialized - V7.4 (1H Momentum Burst Filter)") |
|
|
|
|
|
async def _load_markets(self): |
|
|
try: |
|
|
if not self.exchange: |
|
|
return |
|
|
|
|
|
print("🔄 جلب أحدث بيانات الأسواق من KuCoin...") |
|
|
self.exchange.load_markets() |
|
|
self.market_cache = self.exchange.markets |
|
|
self.last_market_load = datetime.now() |
|
|
print(f"✅ تم تحميل {len(self.market_cache)} سوق من KuCoin") |
|
|
|
|
|
except Exception as e: |
|
|
print(f"❌ فشل تحميل بيانات الأسواق: {e}") |
|
|
|
|
|
async def close(self): |
|
|
if self.http_client and not self.http_client.is_closed: |
|
|
await self.http_client.aclose() |
|
|
print(" ✅ DataManager: http_client closed.") |
|
|
|
|
|
if self.exchange: |
|
|
try: |
|
|
await self.exchange.close() |
|
|
print(" ✅ DataManager: ccxt.kucoin exchange closed.") |
|
|
except Exception as e: |
|
|
print(f" ⚠️ DataManager: Error closing ccxt.kucoin: {e}") |
|
|
|
|
|
async def get_market_context_async(self): |
|
|
try: |
|
|
sentiment_data = await self.get_sentiment_safe_async() |
|
|
price_data = await self._get_prices_with_fallback() |
|
|
|
|
|
bitcoin_price = price_data.get('bitcoin') |
|
|
ethereum_price = price_data.get('ethereum') |
|
|
|
|
|
market_context = { |
|
|
'timestamp': datetime.now().isoformat(), |
|
|
'bitcoin_price_usd': bitcoin_price, |
|
|
'ethereum_price_usd': ethereum_price, |
|
|
'fear_and_greed_index': sentiment_data.get('feargreed_value') if sentiment_data else None, |
|
|
'sentiment_class': sentiment_data.get('feargreed_class') if sentiment_data else 'NEUTRAL', |
|
|
'market_trend': self._determine_market_trend(bitcoin_price, sentiment_data), |
|
|
'btc_sentiment': self._get_btc_sentiment(bitcoin_price), |
|
|
'data_quality': 'HIGH' if bitcoin_price and ethereum_price else 'LOW' |
|
|
} |
|
|
|
|
|
return market_context |
|
|
|
|
|
except Exception as e: |
|
|
return self._get_minimal_market_context() |
|
|
|
|
|
async def get_sentiment_safe_async(self): |
|
|
try: |
|
|
async with httpx.AsyncClient(timeout=10) as client: |
|
|
response = await client.get("https://api.alternative.me/fng/") |
|
|
response.raise_for_status() |
|
|
data = response.json() |
|
|
|
|
|
if 'data' not in data or not data['data']: |
|
|
raise ValueError("بيانات المشاعر غير متوفرة") |
|
|
|
|
|
latest_data = data['data'][0] |
|
|
return { |
|
|
"feargreed_value": int(latest_data['value']), |
|
|
"feargreed_class": latest_data['value_classification'], |
|
|
"source": "alternative.me", |
|
|
"timestamp": datetime.now().isoformat() |
|
|
} |
|
|
except Exception as e: |
|
|
return None |
|
|
|
|
|
def _determine_market_trend(self, bitcoin_price, sentiment_data): |
|
|
if bitcoin_price is None: |
|
|
return "UNKNOWN" |
|
|
if bitcoin_price > 60000: score = 1 |
|
|
elif bitcoin_price < 55000: score = -1 |
|
|
else: score = 0 |
|
|
if sentiment_data and sentiment_data.get('feargreed_value') is not None: |
|
|
fear_greed = sentiment_data.get('feargreed_value') |
|
|
if fear_greed > 60: score += 1 |
|
|
elif fear_greed < 40: score -= 1 |
|
|
if score >= 1: return "bull_market" |
|
|
elif score <= -1: return "bear_market" |
|
|
else: return "sideways_market" |
|
|
|
|
|
def _get_btc_sentiment(self, bitcoin_price): |
|
|
if bitcoin_price is None: return 'UNKNOWN' |
|
|
elif bitcoin_price > 60000: return 'BULLISH' |
|
|
elif bitcoin_price < 55000: return 'BEARISH' |
|
|
else: return 'NEUTRAL' |
|
|
|
|
|
async def _get_prices_with_fallback(self): |
|
|
try: |
|
|
prices = await self._get_prices_from_kucoin_safe() |
|
|
if prices.get('bitcoin') and prices.get('ethereum'): |
|
|
return prices |
|
|
return await self._get_prices_from_coingecko() |
|
|
except Exception as e: |
|
|
return {'bitcoin': None, 'ethereum': None} |
|
|
|
|
|
async def _get_prices_from_kucoin_safe(self): |
|
|
if not self.exchange: return {'bitcoin': None, 'ethereum': None} |
|
|
try: |
|
|
prices = {'bitcoin': None, 'ethereum': None} |
|
|
btc_ticker = self.exchange.fetch_ticker('BTC/USDT') |
|
|
btc_price = float(btc_ticker.get('last', 0)) if btc_ticker.get('last') else None |
|
|
if btc_price and btc_price > 0: prices['bitcoin'] = btc_price |
|
|
eth_ticker = self.exchange.fetch_ticker('ETH/USDT') |
|
|
eth_price = float(eth_ticker.get('last', 0)) if eth_ticker.get('last') else None |
|
|
if eth_price and eth_price > 0: prices['ethereum'] = eth_price |
|
|
return prices |
|
|
except Exception as e: |
|
|
return {'bitcoin': None, 'ethereum': None} |
|
|
|
|
|
async def _get_prices_from_coingecko(self): |
|
|
try: |
|
|
await asyncio.sleep(0.5) |
|
|
url = "https://api.coingecko.com/api/v3/simple/price?ids=bitcoin,ethereum&vs_currencies=usd" |
|
|
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36', 'Accept': 'application/json'} |
|
|
async with httpx.AsyncClient(headers=headers) as client: |
|
|
response = await client.get(url, timeout=10) |
|
|
if response.status_code == 429: |
|
|
await asyncio.sleep(2) |
|
|
response = await client.get(url, timeout=10) |
|
|
response.raise_for_status() |
|
|
data = response.json() |
|
|
btc_price = data.get('bitcoin', {}).get('usd') |
|
|
eth_price = data.get('ethereum', {}).get('usd') |
|
|
if btc_price and eth_price: |
|
|
return {'bitcoin': btc_price, 'ethereum': eth_price} |
|
|
else: |
|
|
return {'bitcoin': None, 'ethereum': None} |
|
|
except Exception as e: |
|
|
return {'bitcoin': None, 'ethereum': None} |
|
|
|
|
|
def _get_minimal_market_context(self): |
|
|
return { |
|
|
'timestamp': datetime.now().isoformat(), |
|
|
'data_available': False, |
|
|
'market_trend': 'UNKNOWN', |
|
|
'btc_sentiment': 'UNKNOWN', |
|
|
'data_quality': 'LOW' |
|
|
} |
|
|
|
|
|
|
|
|
def _create_dataframe(self, candles: List) -> pd.DataFrame: |
|
|
"""(V7.1) دالة مساعدة لإنشاء DataFrame لتحليل 1H""" |
|
|
try: |
|
|
if not candles: return pd.DataFrame() |
|
|
df = pd.DataFrame(candles, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume']) |
|
|
df[['open', 'high', 'low', 'close', 'volume']] = df[['open', 'high', 'low', 'close', 'volume']].astype(float) |
|
|
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms') |
|
|
df.set_index('timestamp', inplace=True) |
|
|
df.sort_index(inplace=True) |
|
|
return df |
|
|
except Exception as e: |
|
|
print(f"❌ خطأ في إنشاء DataFrame لمرشح 1H: {e}") |
|
|
return pd.DataFrame() |
|
|
|
|
|
|
|
|
|
|
|
def _get_mc_score_for_filter(self, analysis: Dict) -> float: |
|
|
"""(V7.4) (دالة مساعدة) لحساب درجة مونت كارلو للفلتر""" |
|
|
mc_distribution = analysis.get('monte_carlo_distribution') |
|
|
monte_carlo_score = 0 |
|
|
|
|
|
if mc_distribution and mc_distribution.get('error') is None: |
|
|
prob_gain = mc_distribution.get('probability_of_gain', 0) |
|
|
var_95_value = mc_distribution.get('risk_metrics', {}).get('VaR_95_value', 0) |
|
|
current_price = analysis.get('current_price', 1) |
|
|
|
|
|
if current_price > 0: |
|
|
normalized_var = var_95_value / current_price |
|
|
risk_penalty = 1.0 |
|
|
if normalized_var > 0.05: risk_penalty = 0.5 |
|
|
elif normalized_var > 0.03: risk_penalty = 0.8 |
|
|
|
|
|
normalized_prob_score = max(0.0, (prob_gain - 0.5) * 2) |
|
|
monte_carlo_score = normalized_prob_score * risk_penalty |
|
|
return monte_carlo_score |
|
|
|
|
|
def _calculate_1h_filter_score(self, analysis: Dict) -> float: |
|
|
""" |
|
|
(محدث V7.4 - فلتر الزخم المتفجر 1H) |
|
|
"فلتر شمس منتصف الظهر" |
|
|
يبحث عن: |
|
|
1. انفجار الحجم (Volume Explosion) |
|
|
2. قوة الاتجاه (Trend Strength - ADX) |
|
|
3. المنطقة الآمنة (RSI Safe Zone) |
|
|
4. (يحتوي على واقي العملات المستقرة V7.2) |
|
|
""" |
|
|
try: |
|
|
|
|
|
ohlcv_candles = analysis.get('ohlcv_1h', {}).get('1h', []) |
|
|
if not ohlcv_candles or len(ohlcv_candles) < 30: |
|
|
return 0.0 |
|
|
|
|
|
closes_1h = [c[4] for c in ohlcv_candles] |
|
|
if len(closes_1h) > 20: |
|
|
std_dev = np.std(closes_1h[-20:]) |
|
|
if std_dev < 1e-5: |
|
|
|
|
|
return 0.0 |
|
|
|
|
|
|
|
|
if ta is None: |
|
|
return 0.0 |
|
|
|
|
|
df = self._create_dataframe(ohlcv_candles) |
|
|
if df.empty: |
|
|
return 0.0 |
|
|
|
|
|
|
|
|
volume = df['volume'] |
|
|
vol_ma = ta.sma(volume, length=20) |
|
|
if vol_ma is None or vol_ma.empty: return 0.0 |
|
|
|
|
|
current_volume = volume.iloc[-1] |
|
|
avg_volume = vol_ma.iloc[-1] |
|
|
|
|
|
adx_data = ta.adx(df['high'], df['low'], df['close'], length=14) |
|
|
current_adx = adx_data['ADX_14'].iloc[-1] if adx_data is not None and not adx_data.empty else 0 |
|
|
|
|
|
|
|
|
indicators = analysis.get('advanced_indicators', {}).get('1h', {}) |
|
|
rsi = indicators.get('rsi', 50) |
|
|
|
|
|
|
|
|
monte_carlo_score = self._get_mc_score_for_filter(analysis) |
|
|
|
|
|
|
|
|
pattern_confidence = analysis.get('pattern_analysis', {}).get('pattern_confidence', 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
VOL_MULTIPLIER = 1.75 |
|
|
ADX_THRESHOLD = 25.0 |
|
|
RSI_MIN = 60 |
|
|
RSI_MAX = 85 |
|
|
|
|
|
vol_score = 0.0 |
|
|
if avg_volume > 0: |
|
|
|
|
|
vol_score = min(1.0, max(0.0, (current_volume / avg_volume) / VOL_MULTIPLIER)) |
|
|
|
|
|
|
|
|
adx_score = min(1.0, max(0.0, (current_adx - ADX_THRESHOLD) / 15.0)) |
|
|
|
|
|
rsi_score = 0.0 |
|
|
if RSI_MIN <= rsi <= RSI_MAX: |
|
|
rsi_score = 1.0 |
|
|
elif rsi > RSI_MAX: |
|
|
rsi_score = 0.5 |
|
|
|
|
|
|
|
|
WEIGHT_VOL = 0.30 |
|
|
WEIGHT_ADX = 0.30 |
|
|
WEIGHT_RSI = 0.15 |
|
|
WEIGHT_MC = 0.15 |
|
|
WEIGHT_PATTERN = 0.10 |
|
|
|
|
|
final_score = ( |
|
|
(vol_score * WEIGHT_VOL) + |
|
|
(adx_score * WEIGHT_ADX) + |
|
|
(rsi_score * WEIGHT_RSI) + |
|
|
(monte_carlo_score * WEIGHT_MC) + |
|
|
(pattern_confidence * WEIGHT_PATTERN) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
return min(max(final_score, 0.0), 1.0) |
|
|
|
|
|
except Exception as e: |
|
|
|
|
|
return 0.0 |
|
|
|
|
|
|
|
|
|
|
|
async def layer1_rapid_screening(self) -> List[Dict[str, Any]]: |
|
|
""" |
|
|
الطبقة 1: فحص سريع - (محدث بالكامل V7.3) |
|
|
""" |
|
|
print("📊 الطبقة 1 (V7.4): بدء الغربلة (الكاشف المتفجر 1H)...") |
|
|
|
|
|
|
|
|
volume_data = await self._get_volume_data_optimal() |
|
|
if not volume_data: |
|
|
volume_data = await self._get_volume_data_direct_api() |
|
|
|
|
|
if not volume_data: |
|
|
print("❌ فشل جلب بيانات الأحجام للطبقة 1") |
|
|
return [] |
|
|
|
|
|
volume_data.sort(key=lambda x: x['dollar_volume'], reverse=True) |
|
|
top_100_by_volume = volume_data[:100] |
|
|
|
|
|
print(f"✅ تم تحديد أفضل {len(top_100_by_volume)} عملة. بدء تشغيل الكاشف المتفجر (1H)...") |
|
|
|
|
|
final_candidates = [] |
|
|
|
|
|
batch_size = 20 |
|
|
for i in range(0, len(top_100_by_volume), batch_size): |
|
|
batch_symbols_data = top_100_by_volume[i:i + batch_size] |
|
|
batch_symbols = [s['symbol'] for s in batch_symbols_data] |
|
|
|
|
|
print(f" 🔄 معالجة دفعة {int(i/batch_size) + 1}/{(len(top_100_by_volume) + batch_size - 1) // batch_size} ({len(batch_symbols)} عملة)...") |
|
|
|
|
|
|
|
|
tasks = [self._fetch_1h_ohlcv_for_screening(symbol) for symbol in batch_symbols] |
|
|
results_candles = await asyncio.gather(*tasks, return_exceptions=True) |
|
|
|
|
|
analysis_tasks = [] |
|
|
valid_symbol_data = [] |
|
|
|
|
|
for j, (candles) in enumerate(results_candles): |
|
|
symbol_data = batch_symbols_data[j] |
|
|
symbol = symbol_data['symbol'] |
|
|
|
|
|
if isinstance(candles, Exception) or not candles or len(candles) < 50: |
|
|
continue |
|
|
|
|
|
ohlcv_1h_only = {'1h': candles} |
|
|
symbol_data['ohlcv_1h'] = ohlcv_1h_only |
|
|
symbol_data['current_price'] = candles[-1][4] |
|
|
analysis_tasks.append(self._run_mini_detector(symbol_data)) |
|
|
valid_symbol_data.append(symbol_data) |
|
|
|
|
|
if not analysis_tasks: |
|
|
continue |
|
|
|
|
|
analysis_results = await asyncio.gather(*analysis_tasks, return_exceptions=True) |
|
|
|
|
|
for j, (analysis_output) in enumerate(analysis_results): |
|
|
symbol_data = valid_symbol_data[j] |
|
|
symbol = symbol_data['symbol'] |
|
|
|
|
|
if isinstance(analysis_output, Exception): |
|
|
print(f" - {symbol}: فشل الكاشف المصغر ({analysis_output})") |
|
|
continue |
|
|
|
|
|
analysis_output['ohlcv_1h'] = symbol_data['ohlcv_1h'] |
|
|
analysis_output['symbol'] = symbol |
|
|
|
|
|
|
|
|
filter_score = self._calculate_1h_filter_score(analysis_output) |
|
|
|
|
|
|
|
|
if filter_score >= 0.50: |
|
|
print(f" ✅ {symbol}: نجح (الدرجة: {filter_score:.2f})") |
|
|
symbol_data['layer1_score'] = filter_score |
|
|
symbol_data['reasons_for_candidacy'] = [f'1H_MOMENTUM_BURST'] |
|
|
|
|
|
if 'ohlcv_1h' in symbol_data: del symbol_data['ohlcv_1h'] |
|
|
|
|
|
final_candidates.append(symbol_data) |
|
|
|
|
|
print(f"🎯 اكتملت الغربلة (V7.4). تم تأهيل {len(final_candidates)} عملة من أصل 100 للطبقة 2.") |
|
|
|
|
|
print("🏆 المرشحون الناجحون:") |
|
|
for k, candidate in enumerate(final_candidates[:15]): |
|
|
score = candidate.get('layer1_score', 0) |
|
|
volume = candidate.get('dollar_volume', 0) |
|
|
print(f" {k+1:2d}. {candidate['symbol']}: (الدرجة: {score:.2f}) | ${volume:,.0f}") |
|
|
|
|
|
return final_candidates |
|
|
|
|
|
async def _run_mini_detector(self, symbol_data: Dict) -> Dict: |
|
|
"""(V7.1) يشغل المحللات الأساسية بالتوازي على بيانات 1H فقط""" |
|
|
ohlcv_1h = symbol_data.get('ohlcv_1h') |
|
|
current_price = symbol_data.get('current_price') |
|
|
|
|
|
df = self._create_dataframe(ohlcv_1h.get('1h')) |
|
|
if df.empty: |
|
|
raise ValueError("DataFrame فارغ لتحليل 1H") |
|
|
|
|
|
analysis_dict = {'current_price': current_price} |
|
|
|
|
|
task_indicators = self.technical_analyzer.calculate_all_indicators(df, '1h') |
|
|
task_mc = self.monte_carlo_analyzer.generate_1h_price_distribution(ohlcv_1h) |
|
|
|
|
|
task_pattern = self.pattern_analyzer.detect_chart_patterns(ohlcv_1h) |
|
|
|
|
|
results = await asyncio.gather(task_mc, task_pattern, return_exceptions=True) |
|
|
|
|
|
analysis_dict['advanced_indicators'] = {'1h': task_indicators} |
|
|
|
|
|
if not isinstance(results[0], Exception): |
|
|
analysis_dict['monte_carlo_distribution'] = results[0] |
|
|
if not isinstance(results[1], Exception): |
|
|
analysis_dict['pattern_analysis'] = results[1] |
|
|
|
|
|
return analysis_dict |
|
|
|
|
|
|
|
|
async def _fetch_1h_ohlcv_for_screening(self, symbol: str) -> List: |
|
|
"""(V7.1) جلب 100 شمعة لإطار الساعة (1H) للغربلة السريعة""" |
|
|
try: |
|
|
ohlcv_data = self.exchange.fetch_ohlcv(symbol, '1h', limit=100) |
|
|
|
|
|
if not ohlcv_data or len(ohlcv_data) < 50: |
|
|
return None |
|
|
return ohlcv_data |
|
|
except Exception: |
|
|
return None |
|
|
|
|
|
async def _get_volume_data_optimal(self) -> List[Dict[str, Any]]: |
|
|
try: |
|
|
if not self.exchange: return [] |
|
|
tickers = self.exchange.fetch_tickers() |
|
|
volume_data = [] |
|
|
for symbol, ticker in tickers.items(): |
|
|
if not symbol.endswith('/USDT') or not ticker.get('active', True): continue |
|
|
current_price = ticker.get('last', 0) |
|
|
quote_volume = ticker.get('quoteVolume', 0) |
|
|
if current_price is None or current_price <= 0: continue |
|
|
if quote_volume is not None and quote_volume > 0: |
|
|
dollar_volume = quote_volume |
|
|
else: |
|
|
base_volume = ticker.get('baseVolume', 0) |
|
|
if base_volume is None: continue |
|
|
dollar_volume = base_volume * current_price |
|
|
if dollar_volume is None or dollar_volume < 50000: continue |
|
|
|
|
|
price_change_24h = ticker.get('percentage', 0) or 0 |
|
|
if price_change_24h is None: price_change_24h = 0 |
|
|
|
|
|
volume_data.append({ |
|
|
'symbol': symbol, 'dollar_volume': dollar_volume, |
|
|
'current_price': current_price, 'volume_24h': ticker.get('baseVolume', 0) or 0, |
|
|
'price_change_24h': price_change_24h |
|
|
}) |
|
|
print(f"✅ تم معالجة {len(volume_data)} عملة في الطريقة المثلى (لجلب الحجم)") |
|
|
return volume_data |
|
|
except Exception as e: |
|
|
print(f"❌ خطأ في جلب بيانات الحجم المثلى: {e}") |
|
|
return [] |
|
|
|
|
|
async def _get_volume_data_direct_api(self) -> List[Dict[str, Any]]: |
|
|
try: |
|
|
url = "https://api.kucoin.com/api/v1/market/allTickers" |
|
|
async with httpx.AsyncClient(timeout=15) as client: |
|
|
response = await client.get(url) |
|
|
response.raise_for_status() |
|
|
data = response.json() |
|
|
if data.get('code') != '200000': raise ValueError(f"استجابة API غير متوقعة: {data.get('code')}") |
|
|
tickers = data['data']['ticker'] |
|
|
volume_data = [] |
|
|
for ticker in tickers: |
|
|
symbol = ticker['symbol'] |
|
|
if not symbol.endswith('USDT'): continue |
|
|
formatted_symbol = symbol.replace('-', '/') |
|
|
try: |
|
|
vol_value = ticker.get('volValue') |
|
|
last_price = ticker.get('last') |
|
|
change_rate = ticker.get('changeRate') |
|
|
vol = ticker.get('vol') |
|
|
if vol_value is None or last_price is None or change_rate is None or vol is None: continue |
|
|
dollar_volume = float(vol_value) if vol_value else 0 |
|
|
current_price = float(last_price) if last_price else 0 |
|
|
price_change = (float(change_rate) * 100) if change_rate else 0 |
|
|
volume_24h = float(vol) if vol else 0 |
|
|
if dollar_volume >= 50000 and current_price > 0: |
|
|
volume_data.append({ |
|
|
'symbol': formatted_symbol, 'dollar_volume': dollar_volume, |
|
|
'current_price': current_price, 'volume_24h': volume_24h, |
|
|
'price_change_24h': price_change |
|
|
}) |
|
|
except (ValueError, TypeError, KeyError) as e: continue |
|
|
print(f"✅ تم معالجة {len(volume_data)} عملة في الطريقة المباشرة (لجلب الحجم)") |
|
|
return volume_data |
|
|
except Exception as e: |
|
|
print(f"❌ خطأ في جلب بيانات الحجم المباشر: {e}") |
|
|
return [] |
|
|
|
|
|
async def stream_ohlcv_data(self, symbols: List[Dict[str, Any]], queue: asyncio.Queue): |
|
|
""" |
|
|
(محدث V7.2) |
|
|
جلب بيانات OHLCV كاملة (6 أطر زمنية) للعملات الناجحة فقط |
|
|
""" |
|
|
print(f"📊 بدء تدفق بيانات OHLCV (الكاملة) لـ {len(symbols)} عملة (الناجحين من الغربلة)...") |
|
|
|
|
|
batch_size = 15 |
|
|
batches = [symbols[i:i + batch_size] for i in range(0, len(symbols), batch_size)] |
|
|
|
|
|
total_successful = 0 |
|
|
|
|
|
for batch_num, batch in enumerate(batches): |
|
|
print(f" 🔄 [المنتج] جلب الدفعة {batch_num + 1}/{len(batches)} ({len(batch)} عملة)...") |
|
|
|
|
|
batch_tasks = [] |
|
|
|
|
|
|
|
|
for symbol_data in batch: |
|
|
symbol_str = symbol_data['symbol'] |
|
|
task = asyncio.create_task(self._fetch_complete_ohlcv_parallel(symbol_str)) |
|
|
batch_tasks.append(task) |
|
|
|
|
|
batch_results = await asyncio.gather(*batch_tasks, return_exceptions=True) |
|
|
|
|
|
successful_data_for_batch = [] |
|
|
successful_count = 0 |
|
|
for i, result in enumerate(batch_results): |
|
|
|
|
|
original_symbol_data = batch[i] |
|
|
symbol_str = original_symbol_data['symbol'] |
|
|
|
|
|
if isinstance(result, Exception): |
|
|
print(f" ❌ [المنتج] فشل جلب {symbol_str}: {result}") |
|
|
elif result is not None: |
|
|
result.update(original_symbol_data) |
|
|
successful_data_for_batch.append(result) |
|
|
successful_count += 1 |
|
|
timeframes_count = result.get('successful_timeframes', 0) |
|
|
print(f" ✅ [المنتج] {symbol_str}: {timeframes_count}/6 أطر زمنية") |
|
|
else: |
|
|
print(f" ⚠️ [المنتج] {symbol_str}: بيانات غير كافية، تم التجاهل") |
|
|
|
|
|
print(f" 📦 [المنتج] اكتملت الدفعة {batch_num + 1}: {successful_count}/{len(batch)} ناجحة") |
|
|
|
|
|
if successful_data_for_batch: |
|
|
try: |
|
|
await queue.put(successful_data_for_batch) |
|
|
print(f" 📬 [المنتج] تم إرسال {len(successful_data_for_batch)} عملة إلى طابور المعالجة") |
|
|
total_successful += len(successful_data_for_batch) |
|
|
except Exception as q_err: |
|
|
print(f" ❌ [المنتج] فشل إرسال الدفعة للطابور: {q_err}") |
|
|
|
|
|
if batch_num < len(batches) - 1: |
|
|
await asyncio.sleep(1) |
|
|
|
|
|
print(f"✅ [المنتج] اكتمل تدفق بيانات OHLCV (الكاملة). تم إرسال {total_successful} عملة للمعالجة.") |
|
|
|
|
|
try: |
|
|
await queue.put(None) |
|
|
print(" 📬 [المنتج] تم إرسال إشارة الإنهاء (None) إلى الطابور.") |
|
|
except Exception as q_err: |
|
|
print(f" ❌ [المنتج] فشل إرسال إشارة الإنهاء (None) للطابور: {q_err}") |
|
|
|
|
|
|
|
|
async def _fetch_complete_ohlcv_parallel(self, symbol: str) -> Dict[str, Any]: |
|
|
"""(V7.2) جلب بيانات OHLCV كاملة - يتوقع 'symbol' كنص""" |
|
|
try: |
|
|
ohlcv_data = {} |
|
|
|
|
|
timeframes = [ |
|
|
('5m', 200), ('15m', 200), ('1h', 200), |
|
|
('4h', 200), ('1d', 200), ('1w', 200), |
|
|
] |
|
|
|
|
|
timeframe_tasks = [] |
|
|
for timeframe, limit in timeframes: |
|
|
task = asyncio.create_task(self._fetch_single_timeframe_improved(symbol, timeframe, limit)) |
|
|
timeframe_tasks.append(task) |
|
|
|
|
|
timeframe_results = await asyncio.gather(*timeframe_tasks, return_exceptions=True) |
|
|
|
|
|
successful_timeframes = 0 |
|
|
min_required_timeframes = 2 |
|
|
|
|
|
for i, (timeframe, limit) in enumerate(timeframes): |
|
|
result = timeframe_results[i] |
|
|
if isinstance(result, Exception): continue |
|
|
|
|
|
if result and len(result) >= 200: |
|
|
ohlcv_data[timeframe] = result |
|
|
successful_timeframes += 1 |
|
|
|
|
|
|
|
|
if successful_timeframes >= 3 and ohlcv_data: |
|
|
try: |
|
|
current_price = await self.get_latest_price_async(symbol) |
|
|
if current_price is None: |
|
|
for timeframe_data in ohlcv_data.values(): |
|
|
if timeframe_data and len(timeframe_data) > 0: |
|
|
last_candle = timeframe_data[-1] |
|
|
if len(last_candle) >= 5: |
|
|
current_price = last_candle[4]; break |
|
|
if current_price is None: return None |
|
|
|
|
|
result_data = { |
|
|
'symbol': symbol, 'ohlcv': ohlcv_data, 'raw_ohlcv': ohlcv_data, |
|
|
'current_price': current_price, 'timestamp': datetime.now().isoformat(), |
|
|
'candles_count': {tf: len(data) for tf, data in ohlcv_data.items()}, |
|
|
'successful_timeframes': successful_timeframes |
|
|
} |
|
|
return result_data |
|
|
except Exception as price_error: return None |
|
|
else: return None |
|
|
except Exception as e: return None |
|
|
|
|
|
async def _fetch_single_timeframe_improved(self, symbol: str, timeframe: str, limit: int): |
|
|
"""(V7.2) جلب بيانات إطار زمني واحد - يتوقع 'symbol' كنص""" |
|
|
max_retries = 3 |
|
|
retry_delay = 2 |
|
|
for attempt in range(max_retries): |
|
|
try: |
|
|
ohlcv_data = self.exchange.fetch_ohlcv(symbol, timeframe, limit=limit) |
|
|
if ohlcv_data and len(ohlcv_data) > 0: |
|
|
return ohlcv_data |
|
|
else: |
|
|
return [] |
|
|
except Exception as e: |
|
|
if attempt < max_retries - 1: |
|
|
await asyncio.sleep(retry_delay * (attempt + 1)) |
|
|
else: |
|
|
return [] |
|
|
|
|
|
async def get_latest_price_async(self, symbol): |
|
|
"""(V7.2) جلب السعر الحالي - يتوقع 'symbol' كنص""" |
|
|
try: |
|
|
if not self.exchange: return None |
|
|
if not symbol or '/' not in symbol: return None |
|
|
ticker = self.exchange.fetch_ticker(symbol) |
|
|
if not ticker: return None |
|
|
current_price = ticker.get('last') |
|
|
if current_price is None: return None |
|
|
return float(current_price) |
|
|
except Exception as e: return None |
|
|
|
|
|
async def get_whale_data_for_symbol(self, symbol): |
|
|
try: |
|
|
if self.whale_monitor: |
|
|
whale_data = await self.whale_monitor.get_symbol_whale_activity(symbol) |
|
|
return whale_data |
|
|
else: return None |
|
|
except Exception as e: return None |
|
|
|
|
|
async def get_whale_trading_signal(self, symbol, whale_data, market_context): |
|
|
try: |
|
|
if self.whale_monitor: |
|
|
return await self.whale_monitor.generate_whale_trading_signal(symbol, whale_data, market_context) |
|
|
else: |
|
|
return {'action': 'HOLD', 'confidence': 0.3, 'reason': 'Whale monitor not available', 'source': 'whale_analysis'} |
|
|
except Exception as e: |
|
|
return {'action': 'HOLD', 'confidence': 0.3, 'reason': f'Error: {str(e)}', 'source': 'whale_analysis'} |
|
|
|
|
|
print("✅ DataManager loaded - V7.4 (1H Momentum Burst Filter)") |