Spaces:
Runtime error
Runtime error
| from fastapi import FastAPI | |
| from llama_cpp import Llama | |
| import streamlit as st | |
| llm = Llama( | |
| model_path="Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf", | |
| ) | |
| prompt = st.chat_input("Say something") | |
| if prompt: | |
| st.write(f"User has sent the following prompt: {prompt}") | |
| ## create a new FASTAPI app instance | |
| # app=FastAPI() | |
| # Initialize the text generation pipeline | |
| #pipe = pipeline("text2text-generation", model="lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF",token=os.getenv('HF_KEY')) | |
| # @app.get("/") | |
| # def home(): | |
| # print("helloe here") | |
| # output= llm("What is the difference btw RAG and Fine tunning", max_tokens=1000) | |
| # print(output["choices"][0]["text"]) | |
| # ## return the generate text in Json reposne | |
| # return {"output":output["choices"][0]["text"]} | |
| # # Define a function to handle the GET request at `/generate` | |
| # @app.get("/generate") | |
| # def generate(text:str): | |
| # ## use the pipeline to generate text from given input text | |
| # print("Recieved prompt "+str(text)) | |
| # output= llm(text, max_tokens=1000) | |
| # print(output["choices"][0]["text"]) | |
| # ## return the generate text in Json reposne | |
| # return {"output":output["choices"][0]["text"]} | |