Spaces:
Running
on
Zero
Running
on
Zero
Fix generation
Browse files
app.py
CHANGED
|
@@ -171,15 +171,11 @@ def diffusion_chat(question, eot_weight, max_it, sharpness, noise_clipping, use_
|
|
| 171 |
for i in range(max_it):
|
| 172 |
print('Generating output')
|
| 173 |
|
| 174 |
-
# Compose full input: original prompt + current answer
|
| 175 |
-
full_input_tokens = ori_input_tokens[:answer_start] + current_tokens[answer_start:]
|
| 176 |
-
full_input_tokens = full_input_tokens[:256] + [pad_token] * max(0, 256 - len(full_input_tokens))
|
| 177 |
-
|
| 178 |
# Model step
|
| 179 |
-
generated_tokens, confidences = generate_diffusion_text(
|
| 180 |
|
| 181 |
# Save full output for noising step
|
| 182 |
-
current_tokens = generated_tokens
|
| 183 |
|
| 184 |
# --- GREEN HIGHLIGHT ---
|
| 185 |
decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
|
@@ -202,17 +198,16 @@ def diffusion_chat(question, eot_weight, max_it, sharpness, noise_clipping, use_
|
|
| 202 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
| 203 |
if use_confidence_noising:
|
| 204 |
noised_answer = confidence_guided_noising(
|
| 205 |
-
|
| 206 |
)
|
| 207 |
just_noised_indices = []
|
| 208 |
else:
|
| 209 |
noised_answer, just_noised_indices = noisify_answer(
|
| 210 |
-
|
| 211 |
)
|
| 212 |
|
| 213 |
# Compose full input again: prompt + noised answer
|
| 214 |
current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
|
| 215 |
-
current_tokens = current_tokens[:256] + [pad_token] * max(0, 256 - len(current_tokens))
|
| 216 |
|
| 217 |
# --- RED HIGHLIGHT ---
|
| 218 |
decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
|
|
|
| 171 |
for i in range(max_it):
|
| 172 |
print('Generating output')
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
# Model step
|
| 175 |
+
generated_tokens, confidences = generate_diffusion_text(current_tokens)
|
| 176 |
|
| 177 |
# Save full output for noising step
|
| 178 |
+
current_tokens = ori_input_tokens[answer_start] + generated_tokens[answer_start:]
|
| 179 |
|
| 180 |
# --- GREEN HIGHLIGHT ---
|
| 181 |
decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|
|
|
|
| 198 |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
|
| 199 |
if use_confidence_noising:
|
| 200 |
noised_answer = confidence_guided_noising(
|
| 201 |
+
current_tokens, answer_start, confidences, threshold, eot_weight, noise_clipping
|
| 202 |
)
|
| 203 |
just_noised_indices = []
|
| 204 |
else:
|
| 205 |
noised_answer, just_noised_indices = noisify_answer(
|
| 206 |
+
current_tokens, answer_start, threshold=threshold, eot_weight=eot_weight, clustering=clustering
|
| 207 |
)
|
| 208 |
|
| 209 |
# Compose full input again: prompt + noised answer
|
| 210 |
current_tokens = ori_input_tokens[:answer_start] + noised_answer[answer_start:]
|
|
|
|
| 211 |
|
| 212 |
# --- RED HIGHLIGHT ---
|
| 213 |
decoded_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
|