Spaces:
Runtime error
Runtime error
| from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, TextDataset, DataCollatorForLanguageModeling | |
| model_id = "mistralai/Mistral-7B-Instruct" # if you have resources | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained(model_id) | |
| # Tokenize your dataset | |
| def load_dataset(file_path, tokenizer, block_size=512): | |
| return TextDataset( | |
| tokenizer=tokenizer, | |
| file_path=file_path, | |
| block_size=block_size | |
| ) | |
| train_dataset = load_dataset("coaching_data.txt", tokenizer) | |
| data_collator = DataCollatorForLanguageModeling( | |
| tokenizer=tokenizer, mlm=False, | |
| ) | |
| training_args = TrainingArguments( | |
| output_dir="./skilllink-coach", | |
| overwrite_output_dir=True, | |
| num_train_epochs=3, | |
| per_device_train_batch_size=2, | |
| save_steps=100, | |
| save_total_limit=1, | |
| logging_dir="./logs", | |
| fp16=True, # If using GPU | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| data_collator=data_collator, | |
| train_dataset=train_dataset, | |
| ) | |
| trainer.train() | |
| trainer.save_model("./skilllink-coach") | |
| tokenizer.save_pretrained("./skilllink-coach") |