Spaces:
Running
Running
Upload 8 files
Browse files- app.py +0 -0
- bubble_detector.py +2030 -0
- hyphen_textwrap.py +508 -0
- local_inpainter.py +0 -0
- manga_integration.py +0 -0
- manga_settings_dialog.py +0 -0
- manga_translator.py +0 -0
- ocr_manager.py +1904 -0
app.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
bubble_detector.py
ADDED
|
@@ -0,0 +1,2030 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
bubble_detector.py - Modified version that works in frozen PyInstaller executables
|
| 3 |
+
Replace your bubble_detector.py with this version
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import json
|
| 8 |
+
import numpy as np
|
| 9 |
+
import cv2
|
| 10 |
+
from typing import List, Tuple, Optional, Dict, Any
|
| 11 |
+
import logging
|
| 12 |
+
import traceback
|
| 13 |
+
import hashlib
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
import threading
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
logging.basicConfig(level=logging.INFO)
|
| 19 |
+
logger = logging.getLogger(__name__)
|
| 20 |
+
|
| 21 |
+
# Check if we're running in a frozen environment
|
| 22 |
+
IS_FROZEN = getattr(sys, 'frozen', False)
|
| 23 |
+
if IS_FROZEN:
|
| 24 |
+
# In frozen environment, set proper paths for ML libraries
|
| 25 |
+
MEIPASS = sys._MEIPASS
|
| 26 |
+
os.environ['TORCH_HOME'] = MEIPASS
|
| 27 |
+
os.environ['TRANSFORMERS_CACHE'] = os.path.join(MEIPASS, 'transformers')
|
| 28 |
+
os.environ['HF_HOME'] = os.path.join(MEIPASS, 'huggingface')
|
| 29 |
+
logger.info(f"Running in frozen environment: {MEIPASS}")
|
| 30 |
+
|
| 31 |
+
# Modified import checks for frozen environment
|
| 32 |
+
YOLO_AVAILABLE = False
|
| 33 |
+
YOLO = None
|
| 34 |
+
torch = None
|
| 35 |
+
TORCH_AVAILABLE = False
|
| 36 |
+
ONNX_AVAILABLE = False
|
| 37 |
+
TRANSFORMERS_AVAILABLE = False
|
| 38 |
+
RTDetrForObjectDetection = None
|
| 39 |
+
RTDetrImageProcessor = None
|
| 40 |
+
PIL_AVAILABLE = False
|
| 41 |
+
|
| 42 |
+
# Try to import YOLO dependencies with better error handling
|
| 43 |
+
if IS_FROZEN:
|
| 44 |
+
# In frozen environment, try harder to import
|
| 45 |
+
try:
|
| 46 |
+
# First try to import torch components individually
|
| 47 |
+
import torch
|
| 48 |
+
import torch.nn
|
| 49 |
+
import torch.cuda
|
| 50 |
+
TORCH_AVAILABLE = True
|
| 51 |
+
logger.info("✓ PyTorch loaded in frozen environment")
|
| 52 |
+
except Exception as e:
|
| 53 |
+
logger.warning(f"PyTorch not available in frozen environment: {e}")
|
| 54 |
+
TORCH_AVAILABLE = False
|
| 55 |
+
torch = None
|
| 56 |
+
|
| 57 |
+
# Try ultralytics after torch
|
| 58 |
+
if TORCH_AVAILABLE:
|
| 59 |
+
try:
|
| 60 |
+
from ultralytics import YOLO
|
| 61 |
+
YOLO_AVAILABLE = True
|
| 62 |
+
logger.info("✓ Ultralytics YOLO loaded in frozen environment")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.warning(f"Ultralytics not available in frozen environment: {e}")
|
| 65 |
+
YOLO_AVAILABLE = False
|
| 66 |
+
|
| 67 |
+
# Try transformers
|
| 68 |
+
try:
|
| 69 |
+
import transformers
|
| 70 |
+
# Try specific imports
|
| 71 |
+
try:
|
| 72 |
+
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
| 73 |
+
TRANSFORMERS_AVAILABLE = True
|
| 74 |
+
logger.info("✓ Transformers RT-DETR loaded in frozen environment")
|
| 75 |
+
except ImportError:
|
| 76 |
+
# Try alternative import
|
| 77 |
+
try:
|
| 78 |
+
from transformers import AutoModel, AutoImageProcessor
|
| 79 |
+
RTDetrForObjectDetection = AutoModel
|
| 80 |
+
RTDetrImageProcessor = AutoImageProcessor
|
| 81 |
+
TRANSFORMERS_AVAILABLE = True
|
| 82 |
+
logger.info("✓ Transformers loaded with AutoModel fallback")
|
| 83 |
+
except:
|
| 84 |
+
TRANSFORMERS_AVAILABLE = False
|
| 85 |
+
logger.warning("Transformers RT-DETR not available in frozen environment")
|
| 86 |
+
except Exception as e:
|
| 87 |
+
logger.warning(f"Transformers not available in frozen environment: {e}")
|
| 88 |
+
TRANSFORMERS_AVAILABLE = False
|
| 89 |
+
else:
|
| 90 |
+
# Normal environment - original import logic
|
| 91 |
+
try:
|
| 92 |
+
from ultralytics import YOLO
|
| 93 |
+
YOLO_AVAILABLE = True
|
| 94 |
+
except:
|
| 95 |
+
YOLO_AVAILABLE = False
|
| 96 |
+
logger.warning("Ultralytics YOLO not available")
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
import torch
|
| 100 |
+
# Test if cuda attribute exists
|
| 101 |
+
_ = torch.cuda
|
| 102 |
+
TORCH_AVAILABLE = True
|
| 103 |
+
except (ImportError, AttributeError):
|
| 104 |
+
TORCH_AVAILABLE = False
|
| 105 |
+
torch = None
|
| 106 |
+
logger.warning("PyTorch not available or incomplete")
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
| 110 |
+
try:
|
| 111 |
+
from transformers import RTDetrV2ForObjectDetection
|
| 112 |
+
RTDetrForObjectDetection = RTDetrV2ForObjectDetection
|
| 113 |
+
except ImportError:
|
| 114 |
+
pass
|
| 115 |
+
TRANSFORMERS_AVAILABLE = True
|
| 116 |
+
except:
|
| 117 |
+
TRANSFORMERS_AVAILABLE = False
|
| 118 |
+
logger.info("Transformers not available for RT-DETR")
|
| 119 |
+
|
| 120 |
+
# Configure ORT memory behavior before importing
|
| 121 |
+
try:
|
| 122 |
+
os.environ.setdefault('ORT_DISABLE_MEMORY_ARENA', '1')
|
| 123 |
+
except Exception:
|
| 124 |
+
pass
|
| 125 |
+
# ONNX Runtime - works well in frozen environments
|
| 126 |
+
try:
|
| 127 |
+
import onnxruntime as ort
|
| 128 |
+
ONNX_AVAILABLE = True
|
| 129 |
+
logger.info("✓ ONNX Runtime available")
|
| 130 |
+
except ImportError:
|
| 131 |
+
ONNX_AVAILABLE = False
|
| 132 |
+
logger.warning("ONNX Runtime not available")
|
| 133 |
+
|
| 134 |
+
# PIL
|
| 135 |
+
try:
|
| 136 |
+
from PIL import Image
|
| 137 |
+
PIL_AVAILABLE = True
|
| 138 |
+
except ImportError:
|
| 139 |
+
PIL_AVAILABLE = False
|
| 140 |
+
logger.info("PIL not available")
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class BubbleDetector:
|
| 144 |
+
"""
|
| 145 |
+
Combined YOLOv8 and RT-DETR speech bubble detector for comics and manga.
|
| 146 |
+
Supports multiple model formats and provides configurable detection.
|
| 147 |
+
Backward compatible with existing code while adding RT-DETR support.
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
# Process-wide shared RT-DETR to avoid concurrent meta-device loads
|
| 151 |
+
_rtdetr_init_lock = threading.Lock()
|
| 152 |
+
_rtdetr_shared_model = None
|
| 153 |
+
_rtdetr_shared_processor = None
|
| 154 |
+
_rtdetr_loaded = False
|
| 155 |
+
_rtdetr_repo_id = 'ogkalu/comic-text-and-bubble-detector'
|
| 156 |
+
|
| 157 |
+
# Shared RT-DETR (ONNX) across process to avoid device/context storms
|
| 158 |
+
_rtdetr_onnx_init_lock = threading.Lock()
|
| 159 |
+
_rtdetr_onnx_shared_session = None
|
| 160 |
+
_rtdetr_onnx_loaded = False
|
| 161 |
+
_rtdetr_onnx_providers = None
|
| 162 |
+
_rtdetr_onnx_model_path = None
|
| 163 |
+
# Limit concurrent runs to avoid device hangs. Defaults to 2 for better parallelism.
|
| 164 |
+
# Can be overridden via env DML_MAX_CONCURRENT or config rtdetr_max_concurrency
|
| 165 |
+
try:
|
| 166 |
+
_rtdetr_onnx_max_concurrent = int(os.environ.get('DML_MAX_CONCURRENT', '2'))
|
| 167 |
+
except Exception:
|
| 168 |
+
_rtdetr_onnx_max_concurrent = 2
|
| 169 |
+
_rtdetr_onnx_sema = threading.Semaphore(max(1, _rtdetr_onnx_max_concurrent))
|
| 170 |
+
_rtdetr_onnx_sema_initialized = False
|
| 171 |
+
|
| 172 |
+
def __init__(self, config_path: str = "config.json"):
|
| 173 |
+
"""
|
| 174 |
+
Initialize the bubble detector.
|
| 175 |
+
|
| 176 |
+
Args:
|
| 177 |
+
config_path: Path to configuration file
|
| 178 |
+
"""
|
| 179 |
+
# Set thread limits early if environment indicates single-threaded mode
|
| 180 |
+
try:
|
| 181 |
+
if os.environ.get('OMP_NUM_THREADS') == '1':
|
| 182 |
+
# Already in single-threaded mode, ensure it's applied to this process
|
| 183 |
+
# Check if torch is available at module level before trying to use it
|
| 184 |
+
if TORCH_AVAILABLE and torch is not None:
|
| 185 |
+
try:
|
| 186 |
+
torch.set_num_threads(1)
|
| 187 |
+
except (RuntimeError, AttributeError):
|
| 188 |
+
pass
|
| 189 |
+
try:
|
| 190 |
+
import cv2
|
| 191 |
+
cv2.setNumThreads(1)
|
| 192 |
+
except (ImportError, AttributeError):
|
| 193 |
+
pass
|
| 194 |
+
except Exception:
|
| 195 |
+
pass
|
| 196 |
+
|
| 197 |
+
self.config_path = config_path
|
| 198 |
+
self.config = self._load_config()
|
| 199 |
+
|
| 200 |
+
# YOLOv8 components (original)
|
| 201 |
+
self.model = None
|
| 202 |
+
self.model_loaded = False
|
| 203 |
+
self.model_type = None # 'yolo', 'onnx', or 'torch'
|
| 204 |
+
self.onnx_session = None
|
| 205 |
+
|
| 206 |
+
# RT-DETR components (new)
|
| 207 |
+
self.rtdetr_model = None
|
| 208 |
+
self.rtdetr_processor = None
|
| 209 |
+
self.rtdetr_loaded = False
|
| 210 |
+
self.rtdetr_repo = 'ogkalu/comic-text-and-bubble-detector'
|
| 211 |
+
|
| 212 |
+
# RT-DETR (ONNX) backend components
|
| 213 |
+
self.rtdetr_onnx_session = None
|
| 214 |
+
self.rtdetr_onnx_loaded = False
|
| 215 |
+
self.rtdetr_onnx_repo = 'ogkalu/comic-text-and-bubble-detector'
|
| 216 |
+
|
| 217 |
+
# RT-DETR class definitions
|
| 218 |
+
self.CLASS_BUBBLE = 0 # Empty speech bubble
|
| 219 |
+
self.CLASS_TEXT_BUBBLE = 1 # Bubble with text
|
| 220 |
+
self.CLASS_TEXT_FREE = 2 # Text without bubble
|
| 221 |
+
|
| 222 |
+
# Detection settings
|
| 223 |
+
self.default_confidence = 0.3
|
| 224 |
+
self.default_iou_threshold = 0.45
|
| 225 |
+
# Allow override from settings
|
| 226 |
+
try:
|
| 227 |
+
ocr_cfg = self.config.get('manga_settings', {}).get('ocr', {}) if isinstance(self.config, dict) else {}
|
| 228 |
+
self.default_max_detections = int(ocr_cfg.get('bubble_max_detections', 100))
|
| 229 |
+
self.max_det_yolo = int(ocr_cfg.get('bubble_max_detections_yolo', self.default_max_detections))
|
| 230 |
+
self.max_det_rtdetr = int(ocr_cfg.get('bubble_max_detections_rtdetr', self.default_max_detections))
|
| 231 |
+
except Exception:
|
| 232 |
+
self.default_max_detections = 100
|
| 233 |
+
self.max_det_yolo = 100
|
| 234 |
+
self.max_det_rtdetr = 100
|
| 235 |
+
|
| 236 |
+
# Cache directory for ONNX conversions
|
| 237 |
+
self.cache_dir = os.environ.get('BUBBLE_CACHE_DIR', 'models')
|
| 238 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
| 239 |
+
|
| 240 |
+
# RT-DETR concurrency setting from config
|
| 241 |
+
try:
|
| 242 |
+
rtdetr_max_conc = int(ocr_cfg.get('rtdetr_max_concurrency', 2))
|
| 243 |
+
# Update class-level semaphore if not yet initialized or if value changed
|
| 244 |
+
if not BubbleDetector._rtdetr_onnx_sema_initialized or rtdetr_max_conc != BubbleDetector._rtdetr_onnx_max_concurrent:
|
| 245 |
+
BubbleDetector._rtdetr_onnx_max_concurrent = max(1, rtdetr_max_conc)
|
| 246 |
+
BubbleDetector._rtdetr_onnx_sema = threading.Semaphore(BubbleDetector._rtdetr_onnx_max_concurrent)
|
| 247 |
+
BubbleDetector._rtdetr_onnx_sema_initialized = True
|
| 248 |
+
logger.info(f"RT-DETR concurrency set to: {BubbleDetector._rtdetr_onnx_max_concurrent}")
|
| 249 |
+
except Exception as e:
|
| 250 |
+
logger.warning(f"Failed to set RT-DETR concurrency: {e}")
|
| 251 |
+
|
| 252 |
+
# GPU availability
|
| 253 |
+
self.use_gpu = TORCH_AVAILABLE and torch.cuda.is_available()
|
| 254 |
+
self.device = 'cuda' if self.use_gpu else 'cpu'
|
| 255 |
+
|
| 256 |
+
# Quantization/precision settings
|
| 257 |
+
adv_cfg = self.config.get('manga_settings', {}).get('advanced', {}) if isinstance(self.config, dict) else {}
|
| 258 |
+
ocr_cfg = self.config.get('manga_settings', {}).get('ocr', {}) if isinstance(self.config, dict) else {}
|
| 259 |
+
env_quant = os.environ.get('MODEL_QUANTIZE', 'false').lower() == 'true'
|
| 260 |
+
self.quantize_enabled = bool(env_quant or adv_cfg.get('quantize_models', False) or ocr_cfg.get('quantize_bubble_detector', False))
|
| 261 |
+
self.quantize_dtype = str(adv_cfg.get('torch_precision', os.environ.get('TORCH_PRECISION', 'auto'))).lower()
|
| 262 |
+
# Prefer advanced.onnx_quantize; fall back to env or global quantize
|
| 263 |
+
self.onnx_quantize_enabled = bool(adv_cfg.get('onnx_quantize', os.environ.get('ONNX_QUANTIZE', 'false').lower() == 'true' or self.quantize_enabled))
|
| 264 |
+
|
| 265 |
+
# Stop flag support
|
| 266 |
+
self.stop_flag = None
|
| 267 |
+
self._stopped = False
|
| 268 |
+
self.log_callback = None
|
| 269 |
+
|
| 270 |
+
logger.info(f"🗨️ BubbleDetector initialized")
|
| 271 |
+
logger.info(f" GPU: {'Available' if self.use_gpu else 'Not available'}")
|
| 272 |
+
logger.info(f" YOLO: {'Available' if YOLO_AVAILABLE else 'Not installed'}")
|
| 273 |
+
logger.info(f" ONNX: {'Available' if ONNX_AVAILABLE else 'Not installed'}")
|
| 274 |
+
logger.info(f" RT-DETR: {'Available' if TRANSFORMERS_AVAILABLE else 'Not installed'}")
|
| 275 |
+
logger.info(f" Quantization: {'ENABLED' if self.quantize_enabled else 'disabled'} (torch_precision={self.quantize_dtype}, onnx_quantize={'on' if self.onnx_quantize_enabled else 'off'})" )
|
| 276 |
+
|
| 277 |
+
def _load_config(self) -> Dict[str, Any]:
|
| 278 |
+
"""Load configuration from file."""
|
| 279 |
+
if os.path.exists(self.config_path):
|
| 280 |
+
try:
|
| 281 |
+
with open(self.config_path, 'r', encoding='utf-8') as f:
|
| 282 |
+
return json.load(f)
|
| 283 |
+
except Exception as e:
|
| 284 |
+
logger.warning(f"Failed to load config: {e}")
|
| 285 |
+
return {}
|
| 286 |
+
|
| 287 |
+
def _save_config(self):
|
| 288 |
+
"""Save configuration to file."""
|
| 289 |
+
try:
|
| 290 |
+
with open(self.config_path, 'w', encoding='utf-8') as f:
|
| 291 |
+
json.dump(self.config, f, indent=2)
|
| 292 |
+
except Exception as e:
|
| 293 |
+
logger.error(f"Failed to save config: {e}")
|
| 294 |
+
|
| 295 |
+
def set_stop_flag(self, stop_flag):
|
| 296 |
+
"""Set the stop flag for checking interruptions"""
|
| 297 |
+
self.stop_flag = stop_flag
|
| 298 |
+
self._stopped = False
|
| 299 |
+
|
| 300 |
+
def set_log_callback(self, log_callback):
|
| 301 |
+
"""Set log callback for GUI integration"""
|
| 302 |
+
self.log_callback = log_callback
|
| 303 |
+
|
| 304 |
+
def _check_stop(self) -> bool:
|
| 305 |
+
"""Check if stop has been requested"""
|
| 306 |
+
if self._stopped:
|
| 307 |
+
return True
|
| 308 |
+
if self.stop_flag and self.stop_flag.is_set():
|
| 309 |
+
self._stopped = True
|
| 310 |
+
return True
|
| 311 |
+
# Check global manga translator cancellation
|
| 312 |
+
try:
|
| 313 |
+
from manga_translator import MangaTranslator
|
| 314 |
+
if MangaTranslator.is_globally_cancelled():
|
| 315 |
+
self._stopped = True
|
| 316 |
+
return True
|
| 317 |
+
except Exception:
|
| 318 |
+
pass
|
| 319 |
+
return False
|
| 320 |
+
|
| 321 |
+
def _log(self, message: str, level: str = "info"):
|
| 322 |
+
"""Log message with stop suppression"""
|
| 323 |
+
# Suppress logs when stopped (allow only essential stop confirmation messages)
|
| 324 |
+
if self._check_stop():
|
| 325 |
+
essential_stop_keywords = [
|
| 326 |
+
"⏹️ Translation stopped by user",
|
| 327 |
+
"⏹️ Bubble detection stopped",
|
| 328 |
+
"cleanup", "🧹"
|
| 329 |
+
]
|
| 330 |
+
if not any(keyword in message for keyword in essential_stop_keywords):
|
| 331 |
+
return
|
| 332 |
+
|
| 333 |
+
if self.log_callback:
|
| 334 |
+
self.log_callback(message, level)
|
| 335 |
+
else:
|
| 336 |
+
logger.info(message) if level == 'info' else getattr(logger, level, logger.info)(message)
|
| 337 |
+
|
| 338 |
+
def reset_stop_flags(self):
|
| 339 |
+
"""Reset stop flags when starting new processing"""
|
| 340 |
+
self._stopped = False
|
| 341 |
+
|
| 342 |
+
def load_model(self, model_path: str, force_reload: bool = False) -> bool:
|
| 343 |
+
"""
|
| 344 |
+
Load a YOLOv8 model for bubble detection.
|
| 345 |
+
|
| 346 |
+
Args:
|
| 347 |
+
model_path: Path to model file (.pt, .onnx, or .torchscript)
|
| 348 |
+
force_reload: Force reload even if model is already loaded
|
| 349 |
+
|
| 350 |
+
Returns:
|
| 351 |
+
True if model loaded successfully, False otherwise
|
| 352 |
+
"""
|
| 353 |
+
try:
|
| 354 |
+
# If given a Hugging Face repo ID (e.g., 'owner/name'), fetch detector.onnx into models/
|
| 355 |
+
if model_path and (('/' in model_path) and not os.path.exists(model_path)):
|
| 356 |
+
try:
|
| 357 |
+
from huggingface_hub import hf_hub_download
|
| 358 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
| 359 |
+
logger.info(f"📥 Resolving repo '{model_path}' to detector.onnx in {self.cache_dir}...")
|
| 360 |
+
resolved = hf_hub_download(repo_id=model_path, filename='detector.onnx', cache_dir=self.cache_dir, local_dir=self.cache_dir, local_dir_use_symlinks=False)
|
| 361 |
+
if resolved and os.path.exists(resolved):
|
| 362 |
+
model_path = resolved
|
| 363 |
+
logger.info(f"✅ Downloaded detector.onnx to: {model_path}")
|
| 364 |
+
except Exception as repo_err:
|
| 365 |
+
logger.error(f"Failed to download from repo '{model_path}': {repo_err}")
|
| 366 |
+
if not os.path.exists(model_path):
|
| 367 |
+
logger.error(f"Model file not found: {model_path}")
|
| 368 |
+
return False
|
| 369 |
+
|
| 370 |
+
# Check if it's the same model already loaded
|
| 371 |
+
if self.model_loaded and not force_reload:
|
| 372 |
+
last_path = self.config.get('last_model_path', '')
|
| 373 |
+
if last_path == model_path:
|
| 374 |
+
logger.info("Model already loaded (same path)")
|
| 375 |
+
return True
|
| 376 |
+
else:
|
| 377 |
+
logger.info(f"Model path changed from {last_path} to {model_path}, reloading...")
|
| 378 |
+
force_reload = True
|
| 379 |
+
|
| 380 |
+
# Clear previous model if force reload
|
| 381 |
+
if force_reload:
|
| 382 |
+
logger.info("Force reloading model...")
|
| 383 |
+
self.model = None
|
| 384 |
+
self.onnx_session = None
|
| 385 |
+
self.model_loaded = False
|
| 386 |
+
self.model_type = None
|
| 387 |
+
|
| 388 |
+
logger.info(f"📥 Loading bubble detection model: {model_path}")
|
| 389 |
+
|
| 390 |
+
# Determine model type by extension
|
| 391 |
+
ext = Path(model_path).suffix.lower()
|
| 392 |
+
|
| 393 |
+
if ext in ['.pt', '.pth']:
|
| 394 |
+
if not YOLO_AVAILABLE:
|
| 395 |
+
logger.warning("Ultralytics package not available in this build")
|
| 396 |
+
logger.info("Bubble detection will be disabled - this is normal for lightweight builds")
|
| 397 |
+
# Don't return False immediately, try other fallbacks
|
| 398 |
+
self.model_loaded = False
|
| 399 |
+
return False
|
| 400 |
+
|
| 401 |
+
# Load YOLOv8 model
|
| 402 |
+
try:
|
| 403 |
+
self.model = YOLO(model_path)
|
| 404 |
+
self.model_type = 'yolo'
|
| 405 |
+
|
| 406 |
+
# Set to eval mode
|
| 407 |
+
if hasattr(self.model, 'model'):
|
| 408 |
+
self.model.model.eval()
|
| 409 |
+
|
| 410 |
+
# Move to GPU if available
|
| 411 |
+
if self.use_gpu and TORCH_AVAILABLE:
|
| 412 |
+
try:
|
| 413 |
+
self.model.to('cuda')
|
| 414 |
+
except Exception as gpu_error:
|
| 415 |
+
logger.warning(f"Could not move model to GPU: {gpu_error}")
|
| 416 |
+
|
| 417 |
+
logger.info("✅ YOLOv8 model loaded successfully")
|
| 418 |
+
# Apply optional FP16 precision to reduce VRAM if enabled
|
| 419 |
+
if self.quantize_enabled and self.use_gpu and TORCH_AVAILABLE:
|
| 420 |
+
try:
|
| 421 |
+
m = self.model.model if hasattr(self.model, 'model') else self.model
|
| 422 |
+
m.half()
|
| 423 |
+
logger.info("🔻 Applied FP16 precision to YOLO model (GPU)")
|
| 424 |
+
except Exception as _e:
|
| 425 |
+
logger.warning(f"Could not switch YOLO model to FP16: {_e}")
|
| 426 |
+
|
| 427 |
+
except Exception as yolo_error:
|
| 428 |
+
logger.error(f"Failed to load YOLO model: {yolo_error}")
|
| 429 |
+
return False
|
| 430 |
+
|
| 431 |
+
elif ext == '.onnx':
|
| 432 |
+
if not ONNX_AVAILABLE:
|
| 433 |
+
logger.warning("ONNX Runtime not available in this build")
|
| 434 |
+
logger.info("ONNX model support disabled - this is normal for lightweight builds")
|
| 435 |
+
return False
|
| 436 |
+
|
| 437 |
+
try:
|
| 438 |
+
# Load ONNX model
|
| 439 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if self.use_gpu else ['CPUExecutionProvider']
|
| 440 |
+
session_path = model_path
|
| 441 |
+
if self.quantize_enabled:
|
| 442 |
+
try:
|
| 443 |
+
from onnxruntime.quantization import quantize_dynamic, QuantType
|
| 444 |
+
quant_path = os.path.splitext(model_path)[0] + ".int8.onnx"
|
| 445 |
+
if not os.path.exists(quant_path) or os.environ.get('FORCE_ONNX_REBUILD', 'false').lower() == 'true':
|
| 446 |
+
logger.info("🔻 Quantizing ONNX model weights to INT8 (dynamic)...")
|
| 447 |
+
quantize_dynamic(model_input=model_path, model_output=quant_path, weight_type=QuantType.QInt8, op_types_to_quantize=['Conv', 'MatMul'])
|
| 448 |
+
session_path = quant_path
|
| 449 |
+
self.config['last_onnx_quantized_path'] = quant_path
|
| 450 |
+
self._save_config()
|
| 451 |
+
logger.info(f"✅ Using quantized ONNX model: {quant_path}")
|
| 452 |
+
except Exception as qe:
|
| 453 |
+
logger.warning(f"ONNX quantization not applied: {qe}")
|
| 454 |
+
# Use conservative ORT memory options to reduce RAM growth
|
| 455 |
+
so = ort.SessionOptions()
|
| 456 |
+
try:
|
| 457 |
+
so.enable_mem_pattern = False
|
| 458 |
+
so.enable_cpu_mem_arena = False
|
| 459 |
+
except Exception:
|
| 460 |
+
pass
|
| 461 |
+
self.onnx_session = ort.InferenceSession(session_path, sess_options=so, providers=providers)
|
| 462 |
+
self.model_type = 'onnx'
|
| 463 |
+
|
| 464 |
+
logger.info("✅ ONNX model loaded successfully")
|
| 465 |
+
|
| 466 |
+
except Exception as onnx_error:
|
| 467 |
+
logger.error(f"Failed to load ONNX model: {onnx_error}")
|
| 468 |
+
return False
|
| 469 |
+
|
| 470 |
+
elif ext == '.torchscript':
|
| 471 |
+
if not TORCH_AVAILABLE:
|
| 472 |
+
logger.warning("PyTorch not available in this build")
|
| 473 |
+
logger.info("TorchScript model support disabled - this is normal for lightweight builds")
|
| 474 |
+
return False
|
| 475 |
+
|
| 476 |
+
try:
|
| 477 |
+
# Add safety check for torch being None
|
| 478 |
+
if torch is None:
|
| 479 |
+
logger.error("PyTorch module is None - cannot load TorchScript model")
|
| 480 |
+
return False
|
| 481 |
+
|
| 482 |
+
# Load TorchScript model
|
| 483 |
+
self.model = torch.jit.load(model_path, map_location='cpu')
|
| 484 |
+
self.model.eval()
|
| 485 |
+
self.model_type = 'torch'
|
| 486 |
+
|
| 487 |
+
if self.use_gpu:
|
| 488 |
+
try:
|
| 489 |
+
self.model = self.model.cuda()
|
| 490 |
+
except Exception as gpu_error:
|
| 491 |
+
logger.warning(f"Could not move TorchScript model to GPU: {gpu_error}")
|
| 492 |
+
|
| 493 |
+
logger.info("✅ TorchScript model loaded successfully")
|
| 494 |
+
|
| 495 |
+
# Optional FP16 precision on GPU
|
| 496 |
+
if self.quantize_enabled and self.use_gpu and TORCH_AVAILABLE:
|
| 497 |
+
try:
|
| 498 |
+
self.model = self.model.half()
|
| 499 |
+
logger.info("🔻 Applied FP16 precision to TorchScript model (GPU)")
|
| 500 |
+
except Exception as _e:
|
| 501 |
+
logger.warning(f"Could not switch TorchScript model to FP16: {_e}")
|
| 502 |
+
|
| 503 |
+
except Exception as torch_error:
|
| 504 |
+
logger.error(f"Failed to load TorchScript model: {torch_error}")
|
| 505 |
+
return False
|
| 506 |
+
|
| 507 |
+
else:
|
| 508 |
+
logger.error(f"Unsupported model format: {ext}")
|
| 509 |
+
logger.info("Supported formats: .pt/.pth (YOLOv8), .onnx (ONNX), .torchscript (TorchScript)")
|
| 510 |
+
return False
|
| 511 |
+
|
| 512 |
+
# Only set loaded if we actually succeeded
|
| 513 |
+
self.model_loaded = True
|
| 514 |
+
self.config['last_model_path'] = model_path
|
| 515 |
+
self.config['model_type'] = self.model_type
|
| 516 |
+
self._save_config()
|
| 517 |
+
|
| 518 |
+
return True
|
| 519 |
+
|
| 520 |
+
except Exception as e:
|
| 521 |
+
logger.error(f"Failed to load model: {e}")
|
| 522 |
+
logger.error(traceback.format_exc())
|
| 523 |
+
self.model_loaded = False
|
| 524 |
+
|
| 525 |
+
# Provide helpful context for .exe users
|
| 526 |
+
logger.info("Note: If running from .exe, some ML libraries may not be included")
|
| 527 |
+
logger.info("This is normal for lightweight builds - bubble detection will be disabled")
|
| 528 |
+
|
| 529 |
+
return False
|
| 530 |
+
|
| 531 |
+
def load_rtdetr_model(self, model_path: str = None, model_id: str = None, force_reload: bool = False) -> bool:
|
| 532 |
+
"""
|
| 533 |
+
Load RT-DETR model for advanced bubble and text detection.
|
| 534 |
+
This implementation avoids the 'meta tensor' copy error by:
|
| 535 |
+
- Serializing the entire load under a class lock (no concurrent loads)
|
| 536 |
+
- Loading directly onto the target device (CUDA if available) via device_map='auto'
|
| 537 |
+
- Avoiding .to() on a potentially-meta model; no device migration post-load
|
| 538 |
+
|
| 539 |
+
Args:
|
| 540 |
+
model_path: Optional path to local model
|
| 541 |
+
model_id: Optional HuggingFace model ID (default: 'ogkalu/comic-text-and-bubble-detector')
|
| 542 |
+
force_reload: Force reload even if already loaded
|
| 543 |
+
|
| 544 |
+
Returns:
|
| 545 |
+
True if successful, False otherwise
|
| 546 |
+
"""
|
| 547 |
+
if not TRANSFORMERS_AVAILABLE:
|
| 548 |
+
logger.error("Transformers library required for RT-DETR. Install with: pip install transformers")
|
| 549 |
+
return False
|
| 550 |
+
|
| 551 |
+
if not PIL_AVAILABLE:
|
| 552 |
+
logger.error("PIL required for RT-DETR. Install with: pip install pillow")
|
| 553 |
+
return False
|
| 554 |
+
|
| 555 |
+
if self.rtdetr_loaded and not force_reload:
|
| 556 |
+
logger.info("RT-DETR model already loaded")
|
| 557 |
+
return True
|
| 558 |
+
|
| 559 |
+
# Fast path: if shared already loaded and not forcing reload, attach
|
| 560 |
+
if BubbleDetector._rtdetr_loaded and not force_reload:
|
| 561 |
+
self.rtdetr_model = BubbleDetector._rtdetr_shared_model
|
| 562 |
+
self.rtdetr_processor = BubbleDetector._rtdetr_shared_processor
|
| 563 |
+
self.rtdetr_loaded = True
|
| 564 |
+
logger.info("RT-DETR model attached from shared cache")
|
| 565 |
+
return True
|
| 566 |
+
|
| 567 |
+
# Serialize the ENTIRE loading sequence to avoid concurrent init issues
|
| 568 |
+
with BubbleDetector._rtdetr_init_lock:
|
| 569 |
+
try:
|
| 570 |
+
# Re-check after acquiring lock
|
| 571 |
+
if BubbleDetector._rtdetr_loaded and not force_reload:
|
| 572 |
+
self.rtdetr_model = BubbleDetector._rtdetr_shared_model
|
| 573 |
+
self.rtdetr_processor = BubbleDetector._rtdetr_shared_processor
|
| 574 |
+
self.rtdetr_loaded = True
|
| 575 |
+
logger.info("RT-DETR model attached from shared cache (post-lock)")
|
| 576 |
+
return True
|
| 577 |
+
|
| 578 |
+
# Use custom model_id if provided, otherwise use default
|
| 579 |
+
repo_id = model_id if model_id else self.rtdetr_repo
|
| 580 |
+
logger.info(f"📥 Loading RT-DETR model from {repo_id}...")
|
| 581 |
+
|
| 582 |
+
# Ensure TorchDynamo/compile doesn't interfere on some builds
|
| 583 |
+
try:
|
| 584 |
+
os.environ.setdefault('TORCHDYNAMO_DISABLE', '1')
|
| 585 |
+
except Exception:
|
| 586 |
+
pass
|
| 587 |
+
|
| 588 |
+
# Decide device strategy
|
| 589 |
+
gpu_available = bool(TORCH_AVAILABLE and hasattr(torch, 'cuda') and torch.cuda.is_available())
|
| 590 |
+
device_map = 'auto' if gpu_available else None
|
| 591 |
+
# Choose dtype
|
| 592 |
+
dtype = None
|
| 593 |
+
if TORCH_AVAILABLE:
|
| 594 |
+
try:
|
| 595 |
+
dtype = torch.float16 if gpu_available else torch.float32
|
| 596 |
+
except Exception:
|
| 597 |
+
dtype = None
|
| 598 |
+
low_cpu = True if gpu_available else False
|
| 599 |
+
|
| 600 |
+
# Load processor (once)
|
| 601 |
+
self.rtdetr_processor = RTDetrImageProcessor.from_pretrained(
|
| 602 |
+
repo_id,
|
| 603 |
+
size={"width": 640, "height": 640},
|
| 604 |
+
cache_dir=self.cache_dir if not model_path else None
|
| 605 |
+
)
|
| 606 |
+
|
| 607 |
+
# Prepare kwargs for from_pretrained
|
| 608 |
+
from_kwargs = {
|
| 609 |
+
'cache_dir': self.cache_dir if not model_path else None,
|
| 610 |
+
'low_cpu_mem_usage': low_cpu,
|
| 611 |
+
'device_map': device_map,
|
| 612 |
+
}
|
| 613 |
+
if dtype is not None:
|
| 614 |
+
from_kwargs['dtype'] = dtype
|
| 615 |
+
|
| 616 |
+
# First attempt: load directly to target (CUDA if available)
|
| 617 |
+
try:
|
| 618 |
+
self.rtdetr_model = RTDetrForObjectDetection.from_pretrained(
|
| 619 |
+
model_path if model_path else repo_id,
|
| 620 |
+
**from_kwargs,
|
| 621 |
+
)
|
| 622 |
+
except Exception as primary_err:
|
| 623 |
+
# Fallback to a simple CPU load (no device move) if CUDA path fails
|
| 624 |
+
logger.warning(f"RT-DETR primary load failed ({primary_err}); retrying on CPU...")
|
| 625 |
+
from_kwargs_fallback = {
|
| 626 |
+
'cache_dir': self.cache_dir if not model_path else None,
|
| 627 |
+
'low_cpu_mem_usage': False,
|
| 628 |
+
'device_map': None,
|
| 629 |
+
}
|
| 630 |
+
if TORCH_AVAILABLE:
|
| 631 |
+
from_kwargs_fallback['dtype'] = torch.float32
|
| 632 |
+
self.rtdetr_model = RTDetrForObjectDetection.from_pretrained(
|
| 633 |
+
model_path if model_path else repo_id,
|
| 634 |
+
**from_kwargs_fallback,
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
# Optional dynamic quantization for linear layers (CPU only)
|
| 638 |
+
if self.quantize_enabled and TORCH_AVAILABLE and (not gpu_available):
|
| 639 |
+
try:
|
| 640 |
+
try:
|
| 641 |
+
import torch.ao.quantization as tq
|
| 642 |
+
quantize_dynamic = tq.quantize_dynamic # type: ignore
|
| 643 |
+
except Exception:
|
| 644 |
+
import torch.quantization as tq # type: ignore
|
| 645 |
+
quantize_dynamic = tq.quantize_dynamic # type: ignore
|
| 646 |
+
self.rtdetr_model = quantize_dynamic(self.rtdetr_model, {torch.nn.Linear}, dtype=torch.qint8)
|
| 647 |
+
logger.info("🔻 Applied dynamic INT8 quantization to RT-DETR linear layers (CPU)")
|
| 648 |
+
except Exception as qe:
|
| 649 |
+
logger.warning(f"RT-DETR dynamic quantization skipped: {qe}")
|
| 650 |
+
|
| 651 |
+
# Finalize
|
| 652 |
+
self.rtdetr_model.eval()
|
| 653 |
+
|
| 654 |
+
# Sanity check: ensure no parameter is left on 'meta' device
|
| 655 |
+
try:
|
| 656 |
+
for n, p in self.rtdetr_model.named_parameters():
|
| 657 |
+
dev = getattr(p, 'device', None)
|
| 658 |
+
if dev is not None and getattr(dev, 'type', '') == 'meta':
|
| 659 |
+
raise RuntimeError(f"Parameter {n} is on 'meta' device after load")
|
| 660 |
+
except Exception as e:
|
| 661 |
+
logger.error(f"RT-DETR load sanity check failed: {e}")
|
| 662 |
+
self.rtdetr_loaded = False
|
| 663 |
+
return False
|
| 664 |
+
|
| 665 |
+
# Publish shared cache
|
| 666 |
+
BubbleDetector._rtdetr_shared_model = self.rtdetr_model
|
| 667 |
+
BubbleDetector._rtdetr_shared_processor = self.rtdetr_processor
|
| 668 |
+
BubbleDetector._rtdetr_loaded = True
|
| 669 |
+
BubbleDetector._rtdetr_repo_id = repo_id
|
| 670 |
+
|
| 671 |
+
self.rtdetr_loaded = True
|
| 672 |
+
|
| 673 |
+
# Save the model ID that was used
|
| 674 |
+
self.config['rtdetr_loaded'] = True
|
| 675 |
+
self.config['rtdetr_model_id'] = repo_id
|
| 676 |
+
self._save_config()
|
| 677 |
+
|
| 678 |
+
loc = 'CUDA' if gpu_available else 'CPU'
|
| 679 |
+
logger.info(f"✅ RT-DETR model loaded successfully ({loc})")
|
| 680 |
+
logger.info(" Classes: Empty bubbles, Text bubbles, Free text")
|
| 681 |
+
|
| 682 |
+
# Auto-convert to ONNX for RT-DETR only if explicitly enabled
|
| 683 |
+
if os.environ.get('AUTO_CONVERT_RTDETR_ONNX', 'false').lower() == 'true':
|
| 684 |
+
onnx_path = os.path.join(self.cache_dir, 'rtdetr_comic.onnx')
|
| 685 |
+
if self.convert_to_onnx('rtdetr', onnx_path):
|
| 686 |
+
logger.info("🚀 RT-DETR converted to ONNX for faster inference")
|
| 687 |
+
# Store ONNX path for later use
|
| 688 |
+
self.config['rtdetr_onnx_path'] = onnx_path
|
| 689 |
+
self._save_config()
|
| 690 |
+
# Optionally quantize ONNX for reduced RAM
|
| 691 |
+
if self.onnx_quantize_enabled:
|
| 692 |
+
try:
|
| 693 |
+
from onnxruntime.quantization import quantize_dynamic, QuantType
|
| 694 |
+
quant_path = os.path.splitext(onnx_path)[0] + ".int8.onnx"
|
| 695 |
+
if not os.path.exists(quant_path) or os.environ.get('FORCE_ONNX_REBUILD', 'false').lower() == 'true':
|
| 696 |
+
logger.info("🔻 Quantizing RT-DETR ONNX to INT8 (dynamic)...")
|
| 697 |
+
quantize_dynamic(model_input=onnx_path, model_output=quant_path, weight_type=QuantType.QInt8, op_types_to_quantize=['Conv', 'MatMul'])
|
| 698 |
+
self.config['rtdetr_onnx_quantized_path'] = quant_path
|
| 699 |
+
self._save_config()
|
| 700 |
+
logger.info(f"✅ Quantized RT-DETR ONNX saved to: {quant_path}")
|
| 701 |
+
except Exception as qe:
|
| 702 |
+
logger.warning(f"ONNX quantization for RT-DETR skipped: {qe}")
|
| 703 |
+
else:
|
| 704 |
+
logger.info("ℹ️ Skipping RT-DETR ONNX export (converter not supported in current environment)")
|
| 705 |
+
|
| 706 |
+
return True
|
| 707 |
+
except Exception as e:
|
| 708 |
+
logger.error(f"❌ Failed to load RT-DETR: {e}")
|
| 709 |
+
self.rtdetr_loaded = False
|
| 710 |
+
return False
|
| 711 |
+
|
| 712 |
+
def check_rtdetr_available(self, model_id: str = None) -> bool:
|
| 713 |
+
"""
|
| 714 |
+
Check if RT-DETR model is available (cached).
|
| 715 |
+
|
| 716 |
+
Args:
|
| 717 |
+
model_id: Optional HuggingFace model ID
|
| 718 |
+
|
| 719 |
+
Returns:
|
| 720 |
+
True if model is cached and available
|
| 721 |
+
"""
|
| 722 |
+
try:
|
| 723 |
+
from pathlib import Path
|
| 724 |
+
|
| 725 |
+
# Use provided model_id or default
|
| 726 |
+
repo_id = model_id if model_id else self.rtdetr_repo
|
| 727 |
+
|
| 728 |
+
# Check HuggingFace cache
|
| 729 |
+
cache_dir = Path.home() / ".cache" / "huggingface" / "hub"
|
| 730 |
+
model_id_formatted = repo_id.replace("/", "--")
|
| 731 |
+
|
| 732 |
+
# Look for model folder
|
| 733 |
+
model_folders = list(cache_dir.glob(f"models--{model_id_formatted}*"))
|
| 734 |
+
|
| 735 |
+
if model_folders:
|
| 736 |
+
for folder in model_folders:
|
| 737 |
+
if (folder / "snapshots").exists():
|
| 738 |
+
snapshots = list((folder / "snapshots").iterdir())
|
| 739 |
+
if snapshots:
|
| 740 |
+
return True
|
| 741 |
+
|
| 742 |
+
return False
|
| 743 |
+
|
| 744 |
+
except Exception:
|
| 745 |
+
return False
|
| 746 |
+
|
| 747 |
+
def detect_bubbles(self,
|
| 748 |
+
image_path: str,
|
| 749 |
+
confidence: float = None,
|
| 750 |
+
iou_threshold: float = None,
|
| 751 |
+
max_detections: int = None,
|
| 752 |
+
use_rtdetr: bool = None) -> List[Tuple[int, int, int, int]]:
|
| 753 |
+
"""
|
| 754 |
+
Detect speech bubbles in an image (backward compatible method).
|
| 755 |
+
|
| 756 |
+
Args:
|
| 757 |
+
image_path: Path to image file
|
| 758 |
+
confidence: Minimum confidence threshold (0-1)
|
| 759 |
+
iou_threshold: IOU threshold for NMS (0-1)
|
| 760 |
+
max_detections: Maximum number of detections to return
|
| 761 |
+
use_rtdetr: If True, use RT-DETR instead of YOLOv8 (if available)
|
| 762 |
+
|
| 763 |
+
Returns:
|
| 764 |
+
List of bubble bounding boxes as (x, y, width, height) tuples
|
| 765 |
+
"""
|
| 766 |
+
# Check for stop at start
|
| 767 |
+
if self._check_stop():
|
| 768 |
+
self._log("⏹️ Bubble detection stopped by user", "warning")
|
| 769 |
+
return []
|
| 770 |
+
|
| 771 |
+
# Decide which model to use
|
| 772 |
+
if use_rtdetr is None:
|
| 773 |
+
# Auto-select: prefer RT-DETR if available
|
| 774 |
+
use_rtdetr = self.rtdetr_loaded
|
| 775 |
+
|
| 776 |
+
if use_rtdetr:
|
| 777 |
+
# Prefer ONNX backend if available, else PyTorch
|
| 778 |
+
if getattr(self, 'rtdetr_onnx_loaded', False):
|
| 779 |
+
results = self.detect_with_rtdetr_onnx(
|
| 780 |
+
image_path=image_path,
|
| 781 |
+
confidence=confidence,
|
| 782 |
+
return_all_bubbles=True
|
| 783 |
+
)
|
| 784 |
+
return results
|
| 785 |
+
if self.rtdetr_loaded:
|
| 786 |
+
results = self.detect_with_rtdetr(
|
| 787 |
+
image_path=image_path,
|
| 788 |
+
confidence=confidence,
|
| 789 |
+
return_all_bubbles=True
|
| 790 |
+
)
|
| 791 |
+
return results
|
| 792 |
+
|
| 793 |
+
# Original YOLOv8 detection
|
| 794 |
+
if not self.model_loaded:
|
| 795 |
+
logger.error("No model loaded. Call load_model() first.")
|
| 796 |
+
return []
|
| 797 |
+
|
| 798 |
+
# Use defaults if not specified
|
| 799 |
+
confidence = confidence or self.default_confidence
|
| 800 |
+
iou_threshold = iou_threshold or self.default_iou_threshold
|
| 801 |
+
max_detections = max_detections or self.default_max_detections
|
| 802 |
+
|
| 803 |
+
try:
|
| 804 |
+
# Load image
|
| 805 |
+
image = cv2.imread(image_path)
|
| 806 |
+
if image is None:
|
| 807 |
+
logger.error(f"Failed to load image: {image_path}")
|
| 808 |
+
return []
|
| 809 |
+
|
| 810 |
+
h, w = image.shape[:2]
|
| 811 |
+
self._log(f"🔍 Detecting bubbles in {w}x{h} image")
|
| 812 |
+
|
| 813 |
+
# Check for stop before inference
|
| 814 |
+
if self._check_stop():
|
| 815 |
+
self._log("⏹️ Bubble detection inference stopped by user", "warning")
|
| 816 |
+
return []
|
| 817 |
+
|
| 818 |
+
if self.model_type == 'yolo':
|
| 819 |
+
# YOLOv8 inference
|
| 820 |
+
results = self.model(
|
| 821 |
+
image_path,
|
| 822 |
+
conf=confidence,
|
| 823 |
+
iou=iou_threshold,
|
| 824 |
+
max_det=min(max_detections, getattr(self, 'max_det_yolo', max_detections)),
|
| 825 |
+
verbose=False
|
| 826 |
+
)
|
| 827 |
+
|
| 828 |
+
bubbles = []
|
| 829 |
+
for r in results:
|
| 830 |
+
if r.boxes is not None:
|
| 831 |
+
for box in r.boxes:
|
| 832 |
+
# Get box coordinates
|
| 833 |
+
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
|
| 834 |
+
x, y = int(x1), int(y1)
|
| 835 |
+
width = int(x2 - x1)
|
| 836 |
+
height = int(y2 - y1)
|
| 837 |
+
|
| 838 |
+
# Get confidence
|
| 839 |
+
conf = float(box.conf[0])
|
| 840 |
+
|
| 841 |
+
# Add to list
|
| 842 |
+
if len(bubbles) < max_detections:
|
| 843 |
+
bubbles.append((x, y, width, height))
|
| 844 |
+
|
| 845 |
+
logger.debug(f" Bubble: ({x},{y}) {width}x{height} conf={conf:.2f}")
|
| 846 |
+
|
| 847 |
+
elif self.model_type == 'onnx':
|
| 848 |
+
# ONNX inference
|
| 849 |
+
bubbles = self._detect_with_onnx(image, confidence, iou_threshold, max_detections)
|
| 850 |
+
|
| 851 |
+
elif self.model_type == 'torch':
|
| 852 |
+
# TorchScript inference
|
| 853 |
+
bubbles = self._detect_with_torchscript(image, confidence, iou_threshold, max_detections)
|
| 854 |
+
|
| 855 |
+
else:
|
| 856 |
+
logger.error(f"Unknown model type: {self.model_type}")
|
| 857 |
+
return []
|
| 858 |
+
|
| 859 |
+
logger.info(f"✅ Detected {len(bubbles)} speech bubbles")
|
| 860 |
+
time.sleep(0.1) # Brief pause for stability
|
| 861 |
+
logger.debug("💤 Bubble detection pausing briefly for stability")
|
| 862 |
+
return bubbles
|
| 863 |
+
|
| 864 |
+
except Exception as e:
|
| 865 |
+
logger.error(f"Detection failed: {e}")
|
| 866 |
+
logger.error(traceback.format_exc())
|
| 867 |
+
return []
|
| 868 |
+
|
| 869 |
+
def detect_with_rtdetr(self,
|
| 870 |
+
image_path: str = None,
|
| 871 |
+
image: np.ndarray = None,
|
| 872 |
+
confidence: float = None,
|
| 873 |
+
return_all_bubbles: bool = False) -> Any:
|
| 874 |
+
"""
|
| 875 |
+
Detect using RT-DETR model with 3-class detection (PyTorch backend).
|
| 876 |
+
|
| 877 |
+
Args:
|
| 878 |
+
image_path: Path to image file
|
| 879 |
+
image: Image array (BGR format)
|
| 880 |
+
confidence: Confidence threshold
|
| 881 |
+
return_all_bubbles: If True, return list of bubble boxes (for compatibility)
|
| 882 |
+
If False, return dict with all classes
|
| 883 |
+
|
| 884 |
+
Returns:
|
| 885 |
+
List of bubbles if return_all_bubbles=True, else dict with classes
|
| 886 |
+
"""
|
| 887 |
+
# Check for stop at start
|
| 888 |
+
if self._check_stop():
|
| 889 |
+
self._log("⏹️ RT-DETR detection stopped by user", "warning")
|
| 890 |
+
if return_all_bubbles:
|
| 891 |
+
return []
|
| 892 |
+
return {'bubbles': [], 'text_bubbles': [], 'text_free': []}
|
| 893 |
+
|
| 894 |
+
if not self.rtdetr_loaded:
|
| 895 |
+
self._log("RT-DETR not loaded. Call load_rtdetr_model() first.", "warning")
|
| 896 |
+
if return_all_bubbles:
|
| 897 |
+
return []
|
| 898 |
+
return {'bubbles': [], 'text_bubbles': [], 'text_free': []}
|
| 899 |
+
|
| 900 |
+
confidence = confidence or self.default_confidence
|
| 901 |
+
|
| 902 |
+
try:
|
| 903 |
+
# Load image
|
| 904 |
+
if image_path:
|
| 905 |
+
image = cv2.imread(image_path)
|
| 906 |
+
elif image is None:
|
| 907 |
+
logger.error("No image provided")
|
| 908 |
+
if return_all_bubbles:
|
| 909 |
+
return []
|
| 910 |
+
return {'bubbles': [], 'text_bubbles': [], 'text_free': []}
|
| 911 |
+
|
| 912 |
+
# Convert BGR to RGB for PIL
|
| 913 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 914 |
+
pil_image = Image.fromarray(image_rgb)
|
| 915 |
+
|
| 916 |
+
# Prepare image for model
|
| 917 |
+
inputs = self.rtdetr_processor(images=pil_image, return_tensors="pt")
|
| 918 |
+
|
| 919 |
+
# Move inputs to the same device as the model and match model dtype for floating tensors
|
| 920 |
+
model_device = next(self.rtdetr_model.parameters()).device if self.rtdetr_model is not None else (torch.device('cpu') if TORCH_AVAILABLE else 'cpu')
|
| 921 |
+
model_dtype = None
|
| 922 |
+
if TORCH_AVAILABLE and self.rtdetr_model is not None:
|
| 923 |
+
try:
|
| 924 |
+
model_dtype = next(self.rtdetr_model.parameters()).dtype
|
| 925 |
+
except Exception:
|
| 926 |
+
model_dtype = None
|
| 927 |
+
|
| 928 |
+
if TORCH_AVAILABLE:
|
| 929 |
+
new_inputs = {}
|
| 930 |
+
for k, v in inputs.items():
|
| 931 |
+
if isinstance(v, torch.Tensor):
|
| 932 |
+
v = v.to(model_device)
|
| 933 |
+
if model_dtype is not None and torch.is_floating_point(v):
|
| 934 |
+
v = v.to(model_dtype)
|
| 935 |
+
new_inputs[k] = v
|
| 936 |
+
inputs = new_inputs
|
| 937 |
+
|
| 938 |
+
# Run inference with autocast when model is half/bfloat16 on CUDA
|
| 939 |
+
use_amp = TORCH_AVAILABLE and hasattr(model_device, 'type') and model_device.type == 'cuda' and (model_dtype in (torch.float16, torch.bfloat16))
|
| 940 |
+
autocast_dtype = model_dtype if model_dtype in (torch.float16, torch.bfloat16) else None
|
| 941 |
+
|
| 942 |
+
with torch.no_grad():
|
| 943 |
+
if use_amp and autocast_dtype is not None:
|
| 944 |
+
with torch.autocast('cuda', dtype=autocast_dtype):
|
| 945 |
+
outputs = self.rtdetr_model(**inputs)
|
| 946 |
+
else:
|
| 947 |
+
outputs = self.rtdetr_model(**inputs)
|
| 948 |
+
|
| 949 |
+
# Brief pause for stability after inference
|
| 950 |
+
time.sleep(0.1)
|
| 951 |
+
logger.debug("💤 RT-DETR inference pausing briefly for stability")
|
| 952 |
+
|
| 953 |
+
# Post-process results
|
| 954 |
+
target_sizes = torch.tensor([pil_image.size[::-1]]) if TORCH_AVAILABLE else None
|
| 955 |
+
if TORCH_AVAILABLE and hasattr(model_device, 'type') and model_device.type == "cuda":
|
| 956 |
+
target_sizes = target_sizes.to(model_device)
|
| 957 |
+
|
| 958 |
+
results = self.rtdetr_processor.post_process_object_detection(
|
| 959 |
+
outputs,
|
| 960 |
+
target_sizes=target_sizes,
|
| 961 |
+
threshold=confidence
|
| 962 |
+
)[0]
|
| 963 |
+
|
| 964 |
+
# Apply per-detector cap if configured
|
| 965 |
+
cap = getattr(self, 'max_det_rtdetr', self.default_max_detections)
|
| 966 |
+
if cap and len(results['boxes']) > cap:
|
| 967 |
+
# Keep top-scoring first
|
| 968 |
+
scores = results['scores']
|
| 969 |
+
top_idx = scores.topk(k=cap).indices if hasattr(scores, 'topk') else range(cap)
|
| 970 |
+
results = {
|
| 971 |
+
'boxes': [results['boxes'][i] for i in top_idx],
|
| 972 |
+
'scores': [results['scores'][i] for i in top_idx],
|
| 973 |
+
'labels': [results['labels'][i] for i in top_idx]
|
| 974 |
+
}
|
| 975 |
+
|
| 976 |
+
logger.info(f"📊 RT-DETR found {len(results['boxes'])} detections above {confidence:.2f} confidence")
|
| 977 |
+
|
| 978 |
+
# Apply NMS to remove duplicate detections
|
| 979 |
+
# Group detections by class
|
| 980 |
+
class_detections = {self.CLASS_BUBBLE: [], self.CLASS_TEXT_BUBBLE: [], self.CLASS_TEXT_FREE: []}
|
| 981 |
+
|
| 982 |
+
for box, score, label in zip(results['boxes'], results['scores'], results['labels']):
|
| 983 |
+
x1, y1, x2, y2 = map(float, box.tolist())
|
| 984 |
+
label_id = label.item()
|
| 985 |
+
if label_id in class_detections:
|
| 986 |
+
class_detections[label_id].append((x1, y1, x2, y2, float(score.item())))
|
| 987 |
+
|
| 988 |
+
# Apply NMS per class to remove duplicates
|
| 989 |
+
def compute_iou(box1, box2):
|
| 990 |
+
"""Compute IoU between two boxes (x1, y1, x2, y2)"""
|
| 991 |
+
x1_1, y1_1, x2_1, y2_1 = box1[:4]
|
| 992 |
+
x1_2, y1_2, x2_2, y2_2 = box2[:4]
|
| 993 |
+
|
| 994 |
+
# Intersection
|
| 995 |
+
x_left = max(x1_1, x1_2)
|
| 996 |
+
y_top = max(y1_1, y1_2)
|
| 997 |
+
x_right = min(x2_1, x2_2)
|
| 998 |
+
y_bottom = min(y2_1, y2_2)
|
| 999 |
+
|
| 1000 |
+
if x_right < x_left or y_bottom < y_top:
|
| 1001 |
+
return 0.0
|
| 1002 |
+
|
| 1003 |
+
intersection = (x_right - x_left) * (y_bottom - y_top)
|
| 1004 |
+
|
| 1005 |
+
# Union
|
| 1006 |
+
area1 = (x2_1 - x1_1) * (y2_1 - y1_1)
|
| 1007 |
+
area2 = (x2_2 - x1_2) * (y2_2 - y1_2)
|
| 1008 |
+
union = area1 + area2 - intersection
|
| 1009 |
+
|
| 1010 |
+
return intersection / union if union > 0 else 0.0
|
| 1011 |
+
|
| 1012 |
+
def apply_nms(boxes_with_scores, iou_threshold=0.45):
|
| 1013 |
+
"""Apply Non-Maximum Suppression"""
|
| 1014 |
+
if not boxes_with_scores:
|
| 1015 |
+
return []
|
| 1016 |
+
|
| 1017 |
+
# Sort by score (descending)
|
| 1018 |
+
sorted_boxes = sorted(boxes_with_scores, key=lambda x: x[4], reverse=True)
|
| 1019 |
+
keep = []
|
| 1020 |
+
|
| 1021 |
+
while sorted_boxes:
|
| 1022 |
+
# Keep the box with highest score
|
| 1023 |
+
current = sorted_boxes.pop(0)
|
| 1024 |
+
keep.append(current)
|
| 1025 |
+
|
| 1026 |
+
# Remove boxes with high IoU
|
| 1027 |
+
sorted_boxes = [box for box in sorted_boxes if compute_iou(current, box) < iou_threshold]
|
| 1028 |
+
|
| 1029 |
+
return keep
|
| 1030 |
+
|
| 1031 |
+
# Apply NMS and organize by class
|
| 1032 |
+
detections = {
|
| 1033 |
+
'bubbles': [], # Empty speech bubbles
|
| 1034 |
+
'text_bubbles': [], # Bubbles with text
|
| 1035 |
+
'text_free': [] # Text without bubbles
|
| 1036 |
+
}
|
| 1037 |
+
|
| 1038 |
+
for class_id, boxes_list in class_detections.items():
|
| 1039 |
+
nms_boxes = apply_nms(boxes_list, iou_threshold=self.default_iou_threshold)
|
| 1040 |
+
|
| 1041 |
+
for x1, y1, x2, y2, scr in nms_boxes:
|
| 1042 |
+
width = int(x2 - x1)
|
| 1043 |
+
height = int(y2 - y1)
|
| 1044 |
+
# Store as (x, y, width, height) to match YOLOv8 format
|
| 1045 |
+
bbox = (int(x1), int(y1), width, height)
|
| 1046 |
+
|
| 1047 |
+
if class_id == self.CLASS_BUBBLE:
|
| 1048 |
+
detections['bubbles'].append(bbox)
|
| 1049 |
+
elif class_id == self.CLASS_TEXT_BUBBLE:
|
| 1050 |
+
detections['text_bubbles'].append(bbox)
|
| 1051 |
+
elif class_id == self.CLASS_TEXT_FREE:
|
| 1052 |
+
detections['text_free'].append(bbox)
|
| 1053 |
+
|
| 1054 |
+
# Stop early if we hit the configured cap across all classes
|
| 1055 |
+
total_count = len(detections['bubbles']) + len(detections['text_bubbles']) + len(detections['text_free'])
|
| 1056 |
+
if total_count >= (self.config.get('manga_settings', {}).get('ocr', {}).get('bubble_max_detections', self.default_max_detections) if isinstance(self.config, dict) else self.default_max_detections):
|
| 1057 |
+
break
|
| 1058 |
+
|
| 1059 |
+
# Log results
|
| 1060 |
+
total = len(detections['bubbles']) + len(detections['text_bubbles']) + len(detections['text_free'])
|
| 1061 |
+
logger.info(f"✅ RT-DETR detected {total} objects:")
|
| 1062 |
+
logger.info(f" - Empty bubbles: {len(detections['bubbles'])}")
|
| 1063 |
+
logger.info(f" - Text bubbles: {len(detections['text_bubbles'])}")
|
| 1064 |
+
logger.info(f" - Free text: {len(detections['text_free'])}")
|
| 1065 |
+
|
| 1066 |
+
# Return format based on compatibility mode
|
| 1067 |
+
if return_all_bubbles:
|
| 1068 |
+
# Return all bubbles (empty + with text) for backward compatibility
|
| 1069 |
+
all_bubbles = detections['bubbles'] + detections['text_bubbles']
|
| 1070 |
+
return all_bubbles
|
| 1071 |
+
else:
|
| 1072 |
+
return detections
|
| 1073 |
+
|
| 1074 |
+
except Exception as e:
|
| 1075 |
+
logger.error(f"RT-DETR detection failed: {e}")
|
| 1076 |
+
logger.error(traceback.format_exc())
|
| 1077 |
+
if return_all_bubbles:
|
| 1078 |
+
return []
|
| 1079 |
+
return {'bubbles': [], 'text_bubbles': [], 'text_free': []}
|
| 1080 |
+
|
| 1081 |
+
def detect_all_text_regions(self, image_path: str = None, image: np.ndarray = None) -> List[Tuple[int, int, int, int]]:
|
| 1082 |
+
"""
|
| 1083 |
+
Detect all text regions using RT-DETR (both in bubbles and free text).
|
| 1084 |
+
|
| 1085 |
+
Returns:
|
| 1086 |
+
List of bounding boxes for all text regions
|
| 1087 |
+
"""
|
| 1088 |
+
if not self.rtdetr_loaded:
|
| 1089 |
+
logger.warning("RT-DETR required for text detection")
|
| 1090 |
+
return []
|
| 1091 |
+
|
| 1092 |
+
detections = self.detect_with_rtdetr(image_path=image_path, image=image, return_all_bubbles=False)
|
| 1093 |
+
|
| 1094 |
+
# Combine text bubbles and free text
|
| 1095 |
+
all_text = detections['text_bubbles'] + detections['text_free']
|
| 1096 |
+
|
| 1097 |
+
logger.info(f"📝 Found {len(all_text)} text regions total")
|
| 1098 |
+
return all_text
|
| 1099 |
+
|
| 1100 |
+
def _detect_with_onnx(self, image: np.ndarray, confidence: float,
|
| 1101 |
+
iou_threshold: float, max_detections: int) -> List[Tuple[int, int, int, int]]:
|
| 1102 |
+
"""Run detection using ONNX model."""
|
| 1103 |
+
# Preprocess image
|
| 1104 |
+
img_size = 640 # Standard YOLOv8 input size
|
| 1105 |
+
img_resized = cv2.resize(image, (img_size, img_size))
|
| 1106 |
+
img_norm = img_resized.astype(np.float32) / 255.0
|
| 1107 |
+
img_transposed = np.transpose(img_norm, (2, 0, 1))
|
| 1108 |
+
img_batch = np.expand_dims(img_transposed, axis=0)
|
| 1109 |
+
|
| 1110 |
+
# Run inference
|
| 1111 |
+
input_name = self.onnx_session.get_inputs()[0].name
|
| 1112 |
+
outputs = self.onnx_session.run(None, {input_name: img_batch})
|
| 1113 |
+
|
| 1114 |
+
# Process outputs (YOLOv8 format)
|
| 1115 |
+
predictions = outputs[0][0] # Remove batch dimension
|
| 1116 |
+
|
| 1117 |
+
# Filter by confidence and apply NMS
|
| 1118 |
+
bubbles = []
|
| 1119 |
+
boxes = []
|
| 1120 |
+
scores = []
|
| 1121 |
+
|
| 1122 |
+
for pred in predictions.T: # Transpose to get predictions per detection
|
| 1123 |
+
if len(pred) >= 5:
|
| 1124 |
+
x_center, y_center, width, height, obj_conf = pred[:5]
|
| 1125 |
+
|
| 1126 |
+
if obj_conf >= confidence:
|
| 1127 |
+
# Convert to corner coordinates
|
| 1128 |
+
x1 = x_center - width / 2
|
| 1129 |
+
y1 = y_center - height / 2
|
| 1130 |
+
|
| 1131 |
+
# Scale to original image size
|
| 1132 |
+
h, w = image.shape[:2]
|
| 1133 |
+
x1 = int(x1 * w / img_size)
|
| 1134 |
+
y1 = int(y1 * h / img_size)
|
| 1135 |
+
width = int(width * w / img_size)
|
| 1136 |
+
height = int(height * h / img_size)
|
| 1137 |
+
|
| 1138 |
+
boxes.append([x1, y1, x1 + width, y1 + height])
|
| 1139 |
+
scores.append(float(obj_conf))
|
| 1140 |
+
|
| 1141 |
+
# Apply NMS
|
| 1142 |
+
if boxes:
|
| 1143 |
+
indices = cv2.dnn.NMSBoxes(boxes, scores, confidence, iou_threshold)
|
| 1144 |
+
if len(indices) > 0:
|
| 1145 |
+
indices = indices.flatten()[:max_detections]
|
| 1146 |
+
for i in indices:
|
| 1147 |
+
x1, y1, x2, y2 = boxes[i]
|
| 1148 |
+
bubbles.append((x1, y1, x2 - x1, y2 - y1))
|
| 1149 |
+
|
| 1150 |
+
return bubbles
|
| 1151 |
+
|
| 1152 |
+
def _detect_with_torchscript(self, image: np.ndarray, confidence: float,
|
| 1153 |
+
iou_threshold: float, max_detections: int) -> List[Tuple[int, int, int, int]]:
|
| 1154 |
+
"""Run detection using TorchScript model."""
|
| 1155 |
+
# Similar to ONNX but using PyTorch tensors
|
| 1156 |
+
img_size = 640
|
| 1157 |
+
img_resized = cv2.resize(image, (img_size, img_size))
|
| 1158 |
+
img_norm = img_resized.astype(np.float32) / 255.0
|
| 1159 |
+
img_tensor = torch.from_numpy(img_norm).permute(2, 0, 1).unsqueeze(0)
|
| 1160 |
+
|
| 1161 |
+
if self.use_gpu:
|
| 1162 |
+
img_tensor = img_tensor.cuda()
|
| 1163 |
+
|
| 1164 |
+
with torch.no_grad():
|
| 1165 |
+
outputs = self.model(img_tensor)
|
| 1166 |
+
|
| 1167 |
+
# Process outputs similar to ONNX
|
| 1168 |
+
# Implementation depends on exact model output format
|
| 1169 |
+
# This is a placeholder - adjust based on your model
|
| 1170 |
+
return []
|
| 1171 |
+
|
| 1172 |
+
def visualize_detections(self, image_path: str, bubbles: List[Tuple[int, int, int, int]] = None,
|
| 1173 |
+
output_path: str = None, use_rtdetr: bool = False) -> np.ndarray:
|
| 1174 |
+
"""
|
| 1175 |
+
Visualize detected bubbles on the image.
|
| 1176 |
+
|
| 1177 |
+
Args:
|
| 1178 |
+
image_path: Path to original image
|
| 1179 |
+
bubbles: List of bubble bounding boxes (if None, will detect)
|
| 1180 |
+
output_path: Optional path to save visualization
|
| 1181 |
+
use_rtdetr: Use RT-DETR for visualization with class colors
|
| 1182 |
+
|
| 1183 |
+
Returns:
|
| 1184 |
+
Image with drawn bounding boxes
|
| 1185 |
+
"""
|
| 1186 |
+
image = cv2.imread(image_path)
|
| 1187 |
+
if image is None:
|
| 1188 |
+
logger.error(f"Failed to load image: {image_path}")
|
| 1189 |
+
return None
|
| 1190 |
+
|
| 1191 |
+
vis_image = image.copy()
|
| 1192 |
+
|
| 1193 |
+
if use_rtdetr and self.rtdetr_loaded:
|
| 1194 |
+
# RT-DETR visualization with different colors per class
|
| 1195 |
+
detections = self.detect_with_rtdetr(image_path=image_path, return_all_bubbles=False)
|
| 1196 |
+
|
| 1197 |
+
# Colors for each class
|
| 1198 |
+
colors = {
|
| 1199 |
+
'bubbles': (0, 255, 0), # Green for empty bubbles
|
| 1200 |
+
'text_bubbles': (255, 0, 0), # Blue for text bubbles
|
| 1201 |
+
'text_free': (0, 0, 255) # Red for free text
|
| 1202 |
+
}
|
| 1203 |
+
|
| 1204 |
+
# Draw detections
|
| 1205 |
+
for class_name, bboxes in detections.items():
|
| 1206 |
+
color = colors[class_name]
|
| 1207 |
+
|
| 1208 |
+
for i, (x, y, w, h) in enumerate(bboxes):
|
| 1209 |
+
# Draw rectangle
|
| 1210 |
+
cv2.rectangle(vis_image, (x, y), (x + w, y + h), color, 2)
|
| 1211 |
+
|
| 1212 |
+
# Add label
|
| 1213 |
+
label = f"{class_name.replace('_', ' ').title()} {i+1}"
|
| 1214 |
+
label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
| 1215 |
+
cv2.rectangle(vis_image, (x, y - label_size[1] - 4),
|
| 1216 |
+
(x + label_size[0], y), color, -1)
|
| 1217 |
+
cv2.putText(vis_image, label, (x, y - 2),
|
| 1218 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
| 1219 |
+
else:
|
| 1220 |
+
# Original YOLOv8 visualization
|
| 1221 |
+
if bubbles is None:
|
| 1222 |
+
bubbles = self.detect_bubbles(image_path)
|
| 1223 |
+
|
| 1224 |
+
# Draw bounding boxes
|
| 1225 |
+
for i, (x, y, w, h) in enumerate(bubbles):
|
| 1226 |
+
# Draw rectangle
|
| 1227 |
+
color = (0, 255, 0) # Green
|
| 1228 |
+
thickness = 2
|
| 1229 |
+
cv2.rectangle(vis_image, (x, y), (x + w, y + h), color, thickness)
|
| 1230 |
+
|
| 1231 |
+
# Add label
|
| 1232 |
+
label = f"Bubble {i+1}"
|
| 1233 |
+
label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
| 1234 |
+
cv2.rectangle(vis_image, (x, y - label_size[1] - 4), (x + label_size[0], y), color, -1)
|
| 1235 |
+
cv2.putText(vis_image, label, (x, y - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
|
| 1236 |
+
|
| 1237 |
+
# Save if output path provided
|
| 1238 |
+
if output_path:
|
| 1239 |
+
cv2.imwrite(output_path, vis_image)
|
| 1240 |
+
logger.info(f"💾 Visualization saved to: {output_path}")
|
| 1241 |
+
|
| 1242 |
+
return vis_image
|
| 1243 |
+
|
| 1244 |
+
def convert_to_onnx(self, model_path: str, output_path: str = None) -> bool:
|
| 1245 |
+
"""
|
| 1246 |
+
Convert a YOLOv8 or RT-DETR model to ONNX format.
|
| 1247 |
+
|
| 1248 |
+
Args:
|
| 1249 |
+
model_path: Path to model file or 'rtdetr' for loaded RT-DETR
|
| 1250 |
+
output_path: Path for ONNX output (auto-generated if None)
|
| 1251 |
+
|
| 1252 |
+
Returns:
|
| 1253 |
+
True if conversion successful, False otherwise
|
| 1254 |
+
"""
|
| 1255 |
+
try:
|
| 1256 |
+
logger.info(f"🔄 Converting {model_path} to ONNX...")
|
| 1257 |
+
|
| 1258 |
+
# Generate output path if not provided
|
| 1259 |
+
if output_path is None:
|
| 1260 |
+
if model_path == 'rtdetr' and self.rtdetr_loaded:
|
| 1261 |
+
base_name = 'rtdetr_comic'
|
| 1262 |
+
else:
|
| 1263 |
+
base_name = Path(model_path).stem
|
| 1264 |
+
output_path = os.path.join(self.cache_dir, f"{base_name}.onnx")
|
| 1265 |
+
|
| 1266 |
+
# Check if already exists
|
| 1267 |
+
if os.path.exists(output_path) and not os.environ.get('FORCE_ONNX_REBUILD', 'false').lower() == 'true':
|
| 1268 |
+
logger.info(f"✅ ONNX model already exists: {output_path}")
|
| 1269 |
+
return True
|
| 1270 |
+
|
| 1271 |
+
# Handle RT-DETR conversion
|
| 1272 |
+
if model_path == 'rtdetr' and self.rtdetr_loaded:
|
| 1273 |
+
if not TORCH_AVAILABLE:
|
| 1274 |
+
logger.error("PyTorch required for RT-DETR ONNX conversion")
|
| 1275 |
+
return False
|
| 1276 |
+
|
| 1277 |
+
# RT-DETR specific conversion
|
| 1278 |
+
self.rtdetr_model.eval()
|
| 1279 |
+
|
| 1280 |
+
# Create dummy input (pixel values): BxCxHxW
|
| 1281 |
+
dummy_input = torch.randn(1, 3, 640, 640)
|
| 1282 |
+
if self.device == 'cuda':
|
| 1283 |
+
dummy_input = dummy_input.to('cuda')
|
| 1284 |
+
|
| 1285 |
+
# Wrap the model to return only tensors (logits, pred_boxes)
|
| 1286 |
+
class _RTDetrExportWrapper(torch.nn.Module):
|
| 1287 |
+
def __init__(self, mdl):
|
| 1288 |
+
super().__init__()
|
| 1289 |
+
self.mdl = mdl
|
| 1290 |
+
def forward(self, images):
|
| 1291 |
+
out = self.mdl(pixel_values=images)
|
| 1292 |
+
# Handle dict/ModelOutput/tuple outputs
|
| 1293 |
+
logits = None
|
| 1294 |
+
boxes = None
|
| 1295 |
+
try:
|
| 1296 |
+
if isinstance(out, dict):
|
| 1297 |
+
logits = out.get('logits', None)
|
| 1298 |
+
boxes = out.get('pred_boxes', out.get('boxes', None))
|
| 1299 |
+
else:
|
| 1300 |
+
logits = getattr(out, 'logits', None)
|
| 1301 |
+
boxes = getattr(out, 'pred_boxes', getattr(out, 'boxes', None))
|
| 1302 |
+
except Exception:
|
| 1303 |
+
pass
|
| 1304 |
+
if (logits is None or boxes is None) and isinstance(out, (tuple, list)) and len(out) >= 2:
|
| 1305 |
+
logits, boxes = out[0], out[1]
|
| 1306 |
+
return logits, boxes
|
| 1307 |
+
|
| 1308 |
+
wrapper = _RTDetrExportWrapper(self.rtdetr_model)
|
| 1309 |
+
if self.device == 'cuda':
|
| 1310 |
+
wrapper = wrapper.to('cuda')
|
| 1311 |
+
|
| 1312 |
+
# Try PyTorch 2.x dynamo_export first (more tolerant of newer aten ops)
|
| 1313 |
+
try:
|
| 1314 |
+
success = False
|
| 1315 |
+
try:
|
| 1316 |
+
from torch.onnx import dynamo_export
|
| 1317 |
+
try:
|
| 1318 |
+
exp = dynamo_export(wrapper, dummy_input)
|
| 1319 |
+
except TypeError:
|
| 1320 |
+
# Older PyTorch dynamo_export may not support this calling convention
|
| 1321 |
+
exp = dynamo_export(wrapper, dummy_input)
|
| 1322 |
+
# exp may have save(); otherwise, it may expose model_proto
|
| 1323 |
+
try:
|
| 1324 |
+
exp.save(output_path) # type: ignore
|
| 1325 |
+
success = True
|
| 1326 |
+
except Exception:
|
| 1327 |
+
try:
|
| 1328 |
+
import onnx as _onnx
|
| 1329 |
+
_onnx.save(exp.model_proto, output_path) # type: ignore
|
| 1330 |
+
success = True
|
| 1331 |
+
except Exception as _se:
|
| 1332 |
+
logger.warning(f"dynamo_export produced model but could not save: {_se}")
|
| 1333 |
+
except Exception as de:
|
| 1334 |
+
logger.warning(f"dynamo_export failed; falling back to legacy exporter: {de}")
|
| 1335 |
+
if success:
|
| 1336 |
+
logger.info(f"✅ RT-DETR ONNX saved to: {output_path} (dynamo_export)")
|
| 1337 |
+
return True
|
| 1338 |
+
except Exception as de2:
|
| 1339 |
+
logger.warning(f"dynamo_export path error: {de2}")
|
| 1340 |
+
|
| 1341 |
+
# Legacy exporter with opset fallback
|
| 1342 |
+
last_err = None
|
| 1343 |
+
for opset in [19, 18, 17, 16, 15, 14, 13]:
|
| 1344 |
+
try:
|
| 1345 |
+
torch.onnx.export(
|
| 1346 |
+
wrapper,
|
| 1347 |
+
dummy_input,
|
| 1348 |
+
output_path,
|
| 1349 |
+
export_params=True,
|
| 1350 |
+
opset_version=opset,
|
| 1351 |
+
do_constant_folding=True,
|
| 1352 |
+
input_names=['pixel_values'],
|
| 1353 |
+
output_names=['logits', 'boxes'],
|
| 1354 |
+
dynamic_axes={
|
| 1355 |
+
'pixel_values': {0: 'batch', 2: 'height', 3: 'width'},
|
| 1356 |
+
'logits': {0: 'batch'},
|
| 1357 |
+
'boxes': {0: 'batch'}
|
| 1358 |
+
}
|
| 1359 |
+
)
|
| 1360 |
+
logger.info(f"✅ RT-DETR ONNX saved to: {output_path} (opset {opset})")
|
| 1361 |
+
return True
|
| 1362 |
+
except Exception as _e:
|
| 1363 |
+
last_err = _e
|
| 1364 |
+
try:
|
| 1365 |
+
msg = str(_e)
|
| 1366 |
+
except Exception:
|
| 1367 |
+
msg = ''
|
| 1368 |
+
logger.warning(f"RT-DETR ONNX export failed at opset {opset}: {msg}")
|
| 1369 |
+
continue
|
| 1370 |
+
|
| 1371 |
+
logger.error(f"All RT-DETR ONNX export attempts failed. Last error: {last_err}")
|
| 1372 |
+
return False
|
| 1373 |
+
|
| 1374 |
+
# Handle YOLOv8 conversion - FIXED
|
| 1375 |
+
elif YOLO_AVAILABLE and os.path.exists(model_path):
|
| 1376 |
+
logger.info(f"Loading YOLOv8 model from: {model_path}")
|
| 1377 |
+
|
| 1378 |
+
# Load model
|
| 1379 |
+
model = YOLO(model_path)
|
| 1380 |
+
|
| 1381 |
+
# Export to ONNX - this returns the path to the exported model
|
| 1382 |
+
logger.info("Exporting to ONNX format...")
|
| 1383 |
+
exported_path = model.export(format='onnx', imgsz=640, simplify=True)
|
| 1384 |
+
|
| 1385 |
+
# exported_path could be a string or Path object
|
| 1386 |
+
exported_path = str(exported_path) if exported_path else None
|
| 1387 |
+
|
| 1388 |
+
if exported_path and os.path.exists(exported_path):
|
| 1389 |
+
# Move to desired location if different
|
| 1390 |
+
if exported_path != output_path:
|
| 1391 |
+
import shutil
|
| 1392 |
+
logger.info(f"Moving ONNX from {exported_path} to {output_path}")
|
| 1393 |
+
shutil.move(exported_path, output_path)
|
| 1394 |
+
|
| 1395 |
+
logger.info(f"✅ YOLOv8 ONNX saved to: {output_path}")
|
| 1396 |
+
return True
|
| 1397 |
+
else:
|
| 1398 |
+
# Fallback: check if it was created with expected name
|
| 1399 |
+
expected_onnx = model_path.replace('.pt', '.onnx')
|
| 1400 |
+
if os.path.exists(expected_onnx):
|
| 1401 |
+
if expected_onnx != output_path:
|
| 1402 |
+
import shutil
|
| 1403 |
+
shutil.move(expected_onnx, output_path)
|
| 1404 |
+
logger.info(f"✅ YOLOv8 ONNX saved to: {output_path}")
|
| 1405 |
+
return True
|
| 1406 |
+
else:
|
| 1407 |
+
logger.error(f"ONNX export failed - no output file found")
|
| 1408 |
+
return False
|
| 1409 |
+
|
| 1410 |
+
else:
|
| 1411 |
+
logger.error(f"Cannot convert {model_path}: Model not found or dependencies missing")
|
| 1412 |
+
return False
|
| 1413 |
+
|
| 1414 |
+
except Exception as e:
|
| 1415 |
+
logger.error(f"Conversion failed: {e}")
|
| 1416 |
+
# Avoid noisy full stack trace in production logs; return False gracefully
|
| 1417 |
+
return False
|
| 1418 |
+
|
| 1419 |
+
def batch_detect(self, image_paths: List[str], **kwargs) -> Dict[str, List[Tuple[int, int, int, int]]]:
|
| 1420 |
+
"""
|
| 1421 |
+
Detect bubbles in multiple images.
|
| 1422 |
+
|
| 1423 |
+
Args:
|
| 1424 |
+
image_paths: List of image paths
|
| 1425 |
+
**kwargs: Detection parameters (confidence, iou_threshold, max_detections, use_rtdetr)
|
| 1426 |
+
|
| 1427 |
+
Returns:
|
| 1428 |
+
Dictionary mapping image paths to bubble lists
|
| 1429 |
+
"""
|
| 1430 |
+
results = {}
|
| 1431 |
+
|
| 1432 |
+
for i, image_path in enumerate(image_paths):
|
| 1433 |
+
logger.info(f"Processing image {i+1}/{len(image_paths)}: {os.path.basename(image_path)}")
|
| 1434 |
+
bubbles = self.detect_bubbles(image_path, **kwargs)
|
| 1435 |
+
results[image_path] = bubbles
|
| 1436 |
+
|
| 1437 |
+
return results
|
| 1438 |
+
|
| 1439 |
+
def unload(self, release_shared: bool = False):
|
| 1440 |
+
"""Release model resources held by this detector instance.
|
| 1441 |
+
Args:
|
| 1442 |
+
release_shared: If True, also clear class-level shared RT-DETR caches.
|
| 1443 |
+
"""
|
| 1444 |
+
try:
|
| 1445 |
+
# Release instance-level models and sessions
|
| 1446 |
+
try:
|
| 1447 |
+
if getattr(self, 'onnx_session', None) is not None:
|
| 1448 |
+
self.onnx_session = None
|
| 1449 |
+
except Exception:
|
| 1450 |
+
pass
|
| 1451 |
+
try:
|
| 1452 |
+
if getattr(self, 'rtdetr_onnx_session', None) is not None:
|
| 1453 |
+
self.rtdetr_onnx_session = None
|
| 1454 |
+
except Exception:
|
| 1455 |
+
pass
|
| 1456 |
+
for attr in ['model', 'rtdetr_model', 'rtdetr_processor']:
|
| 1457 |
+
try:
|
| 1458 |
+
if hasattr(self, attr):
|
| 1459 |
+
setattr(self, attr, None)
|
| 1460 |
+
except Exception:
|
| 1461 |
+
pass
|
| 1462 |
+
for flag in ['model_loaded', 'rtdetr_loaded', 'rtdetr_onnx_loaded']:
|
| 1463 |
+
try:
|
| 1464 |
+
if hasattr(self, flag):
|
| 1465 |
+
setattr(self, flag, False)
|
| 1466 |
+
except Exception:
|
| 1467 |
+
pass
|
| 1468 |
+
|
| 1469 |
+
# Optional: release shared caches
|
| 1470 |
+
if release_shared:
|
| 1471 |
+
try:
|
| 1472 |
+
BubbleDetector._rtdetr_shared_model = None
|
| 1473 |
+
BubbleDetector._rtdetr_shared_processor = None
|
| 1474 |
+
BubbleDetector._rtdetr_loaded = False
|
| 1475 |
+
except Exception:
|
| 1476 |
+
pass
|
| 1477 |
+
|
| 1478 |
+
# Free CUDA cache and trigger GC
|
| 1479 |
+
try:
|
| 1480 |
+
if TORCH_AVAILABLE and torch is not None and torch.cuda.is_available():
|
| 1481 |
+
torch.cuda.empty_cache()
|
| 1482 |
+
except Exception:
|
| 1483 |
+
pass
|
| 1484 |
+
try:
|
| 1485 |
+
import gc
|
| 1486 |
+
gc.collect()
|
| 1487 |
+
except Exception:
|
| 1488 |
+
pass
|
| 1489 |
+
except Exception:
|
| 1490 |
+
# Best-effort only
|
| 1491 |
+
pass
|
| 1492 |
+
|
| 1493 |
+
def get_bubble_masks(self, image_path: str, bubbles: List[Tuple[int, int, int, int]]) -> np.ndarray:
|
| 1494 |
+
"""
|
| 1495 |
+
Create a mask image with bubble regions.
|
| 1496 |
+
|
| 1497 |
+
Args:
|
| 1498 |
+
image_path: Path to original image
|
| 1499 |
+
bubbles: List of bubble bounding boxes
|
| 1500 |
+
|
| 1501 |
+
Returns:
|
| 1502 |
+
Binary mask with bubble regions as white (255)
|
| 1503 |
+
"""
|
| 1504 |
+
image = cv2.imread(image_path)
|
| 1505 |
+
if image is None:
|
| 1506 |
+
return None
|
| 1507 |
+
|
| 1508 |
+
h, w = image.shape[:2]
|
| 1509 |
+
mask = np.zeros((h, w), dtype=np.uint8)
|
| 1510 |
+
|
| 1511 |
+
# Fill bubble regions
|
| 1512 |
+
for x, y, bw, bh in bubbles:
|
| 1513 |
+
cv2.rectangle(mask, (x, y), (x + bw, y + bh), 255, -1)
|
| 1514 |
+
|
| 1515 |
+
return mask
|
| 1516 |
+
|
| 1517 |
+
def filter_bubbles_by_size(self, bubbles: List[Tuple[int, int, int, int]],
|
| 1518 |
+
min_area: int = 100,
|
| 1519 |
+
max_area: int = None) -> List[Tuple[int, int, int, int]]:
|
| 1520 |
+
"""
|
| 1521 |
+
Filter bubbles by area.
|
| 1522 |
+
|
| 1523 |
+
Args:
|
| 1524 |
+
bubbles: List of bubble bounding boxes
|
| 1525 |
+
min_area: Minimum area in pixels
|
| 1526 |
+
max_area: Maximum area in pixels (None for no limit)
|
| 1527 |
+
|
| 1528 |
+
Returns:
|
| 1529 |
+
Filtered list of bubbles
|
| 1530 |
+
"""
|
| 1531 |
+
filtered = []
|
| 1532 |
+
|
| 1533 |
+
for x, y, w, h in bubbles:
|
| 1534 |
+
area = w * h
|
| 1535 |
+
if area >= min_area and (max_area is None or area <= max_area):
|
| 1536 |
+
filtered.append((x, y, w, h))
|
| 1537 |
+
|
| 1538 |
+
return filtered
|
| 1539 |
+
|
| 1540 |
+
def merge_overlapping_bubbles(self, bubbles: List[Tuple[int, int, int, int]],
|
| 1541 |
+
overlap_threshold: float = 0.1) -> List[Tuple[int, int, int, int]]:
|
| 1542 |
+
"""
|
| 1543 |
+
Merge overlapping bubble detections.
|
| 1544 |
+
|
| 1545 |
+
Args:
|
| 1546 |
+
bubbles: List of bubble bounding boxes
|
| 1547 |
+
overlap_threshold: Minimum overlap ratio to merge
|
| 1548 |
+
|
| 1549 |
+
Returns:
|
| 1550 |
+
Merged list of bubbles
|
| 1551 |
+
"""
|
| 1552 |
+
if not bubbles:
|
| 1553 |
+
return []
|
| 1554 |
+
|
| 1555 |
+
# Convert to numpy array for easier manipulation
|
| 1556 |
+
boxes = np.array([(x, y, x+w, y+h) for x, y, w, h in bubbles])
|
| 1557 |
+
|
| 1558 |
+
merged = []
|
| 1559 |
+
used = set()
|
| 1560 |
+
|
| 1561 |
+
for i, box1 in enumerate(boxes):
|
| 1562 |
+
if i in used:
|
| 1563 |
+
continue
|
| 1564 |
+
|
| 1565 |
+
# Start with current box
|
| 1566 |
+
x1, y1, x2, y2 = box1
|
| 1567 |
+
|
| 1568 |
+
# Check for overlaps with remaining boxes
|
| 1569 |
+
for j in range(i + 1, len(boxes)):
|
| 1570 |
+
if j in used:
|
| 1571 |
+
continue
|
| 1572 |
+
|
| 1573 |
+
box2 = boxes[j]
|
| 1574 |
+
|
| 1575 |
+
# Calculate intersection
|
| 1576 |
+
ix1 = max(x1, box2[0])
|
| 1577 |
+
iy1 = max(y1, box2[1])
|
| 1578 |
+
ix2 = min(x2, box2[2])
|
| 1579 |
+
iy2 = min(y2, box2[3])
|
| 1580 |
+
|
| 1581 |
+
if ix1 < ix2 and iy1 < iy2:
|
| 1582 |
+
# Calculate overlap ratio
|
| 1583 |
+
intersection = (ix2 - ix1) * (iy2 - iy1)
|
| 1584 |
+
area1 = (x2 - x1) * (y2 - y1)
|
| 1585 |
+
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
| 1586 |
+
overlap = intersection / min(area1, area2)
|
| 1587 |
+
|
| 1588 |
+
if overlap >= overlap_threshold:
|
| 1589 |
+
# Merge boxes
|
| 1590 |
+
x1 = min(x1, box2[0])
|
| 1591 |
+
y1 = min(y1, box2[1])
|
| 1592 |
+
x2 = max(x2, box2[2])
|
| 1593 |
+
y2 = max(y2, box2[3])
|
| 1594 |
+
used.add(j)
|
| 1595 |
+
|
| 1596 |
+
merged.append((int(x1), int(y1), int(x2 - x1), int(y2 - y1)))
|
| 1597 |
+
|
| 1598 |
+
return merged
|
| 1599 |
+
|
| 1600 |
+
# ============================
|
| 1601 |
+
# RT-DETR (ONNX) BACKEND
|
| 1602 |
+
# ============================
|
| 1603 |
+
def load_rtdetr_onnx_model(self, model_id: str = None, force_reload: bool = False) -> bool:
|
| 1604 |
+
"""
|
| 1605 |
+
Load RT-DETR ONNX model using onnxruntime. Downloads detector.onnx and config.json
|
| 1606 |
+
from the provided Hugging Face repo if not already cached.
|
| 1607 |
+
"""
|
| 1608 |
+
if not ONNX_AVAILABLE:
|
| 1609 |
+
logger.error("ONNX Runtime not available for RT-DETR ONNX backend")
|
| 1610 |
+
return False
|
| 1611 |
+
try:
|
| 1612 |
+
# If singleton mode and already loaded, just attach shared session
|
| 1613 |
+
try:
|
| 1614 |
+
adv = (self.config or {}).get('manga_settings', {}).get('advanced', {}) if isinstance(self.config, dict) else {}
|
| 1615 |
+
singleton = bool(adv.get('use_singleton_models', True))
|
| 1616 |
+
except Exception:
|
| 1617 |
+
singleton = True
|
| 1618 |
+
if singleton and BubbleDetector._rtdetr_onnx_loaded and not force_reload and BubbleDetector._rtdetr_onnx_shared_session is not None:
|
| 1619 |
+
self.rtdetr_onnx_session = BubbleDetector._rtdetr_onnx_shared_session
|
| 1620 |
+
self.rtdetr_onnx_loaded = True
|
| 1621 |
+
return True
|
| 1622 |
+
|
| 1623 |
+
repo = model_id or self.rtdetr_onnx_repo
|
| 1624 |
+
try:
|
| 1625 |
+
from huggingface_hub import hf_hub_download
|
| 1626 |
+
except Exception as e:
|
| 1627 |
+
logger.error(f"huggingface-hub required to fetch RT-DETR ONNX: {e}")
|
| 1628 |
+
return False
|
| 1629 |
+
|
| 1630 |
+
# Ensure local models dir (use configured cache_dir directly: e.g., 'models')
|
| 1631 |
+
cache_dir = self.cache_dir
|
| 1632 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 1633 |
+
|
| 1634 |
+
# Download files into models/ and avoid symlinks so the file is visible there
|
| 1635 |
+
try:
|
| 1636 |
+
_ = hf_hub_download(repo_id=repo, filename='config.json', cache_dir=cache_dir, local_dir=cache_dir, local_dir_use_symlinks=False)
|
| 1637 |
+
except Exception:
|
| 1638 |
+
pass
|
| 1639 |
+
onnx_fp = hf_hub_download(repo_id=repo, filename='detector.onnx', cache_dir=cache_dir, local_dir=cache_dir, local_dir_use_symlinks=False)
|
| 1640 |
+
BubbleDetector._rtdetr_onnx_model_path = onnx_fp
|
| 1641 |
+
|
| 1642 |
+
# Pick providers: prefer CUDA if available; otherwise CPU. Do NOT use DML.
|
| 1643 |
+
providers = ['CPUExecutionProvider']
|
| 1644 |
+
try:
|
| 1645 |
+
avail = ort.get_available_providers() if ONNX_AVAILABLE else []
|
| 1646 |
+
if 'CUDAExecutionProvider' in avail:
|
| 1647 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
| 1648 |
+
except Exception:
|
| 1649 |
+
pass
|
| 1650 |
+
|
| 1651 |
+
# Session options with reduced memory arena and optional thread limiting in singleton mode
|
| 1652 |
+
so = ort.SessionOptions()
|
| 1653 |
+
try:
|
| 1654 |
+
so.enable_mem_pattern = False
|
| 1655 |
+
so.enable_cpu_mem_arena = False
|
| 1656 |
+
except Exception:
|
| 1657 |
+
pass
|
| 1658 |
+
# If singleton models mode is enabled in config, limit ORT threading to reduce CPU spikes
|
| 1659 |
+
try:
|
| 1660 |
+
adv = (self.config or {}).get('manga_settings', {}).get('advanced', {}) if isinstance(self.config, dict) else {}
|
| 1661 |
+
if bool(adv.get('use_singleton_models', True)):
|
| 1662 |
+
so.intra_op_num_threads = 1
|
| 1663 |
+
so.inter_op_num_threads = 1
|
| 1664 |
+
try:
|
| 1665 |
+
so.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
| 1666 |
+
except Exception:
|
| 1667 |
+
pass
|
| 1668 |
+
try:
|
| 1669 |
+
so.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_BASIC
|
| 1670 |
+
except Exception:
|
| 1671 |
+
pass
|
| 1672 |
+
except Exception:
|
| 1673 |
+
pass
|
| 1674 |
+
|
| 1675 |
+
# Create session (serialize creation in singleton mode to avoid device storms)
|
| 1676 |
+
if singleton:
|
| 1677 |
+
with BubbleDetector._rtdetr_onnx_init_lock:
|
| 1678 |
+
# Re-check after acquiring lock
|
| 1679 |
+
if BubbleDetector._rtdetr_onnx_loaded and BubbleDetector._rtdetr_onnx_shared_session is not None and not force_reload:
|
| 1680 |
+
self.rtdetr_onnx_session = BubbleDetector._rtdetr_onnx_shared_session
|
| 1681 |
+
self.rtdetr_onnx_loaded = True
|
| 1682 |
+
return True
|
| 1683 |
+
sess = ort.InferenceSession(onnx_fp, providers=providers, sess_options=so)
|
| 1684 |
+
BubbleDetector._rtdetr_onnx_shared_session = sess
|
| 1685 |
+
BubbleDetector._rtdetr_onnx_loaded = True
|
| 1686 |
+
BubbleDetector._rtdetr_onnx_providers = providers
|
| 1687 |
+
self.rtdetr_onnx_session = sess
|
| 1688 |
+
self.rtdetr_onnx_loaded = True
|
| 1689 |
+
else:
|
| 1690 |
+
self.rtdetr_onnx_session = ort.InferenceSession(onnx_fp, providers=providers, sess_options=so)
|
| 1691 |
+
self.rtdetr_onnx_loaded = True
|
| 1692 |
+
logger.info("✅ RT-DETR (ONNX) model ready")
|
| 1693 |
+
return True
|
| 1694 |
+
except Exception as e:
|
| 1695 |
+
logger.error(f"Failed to load RT-DETR ONNX: {e}")
|
| 1696 |
+
self.rtdetr_onnx_session = None
|
| 1697 |
+
self.rtdetr_onnx_loaded = False
|
| 1698 |
+
return False
|
| 1699 |
+
|
| 1700 |
+
def detect_with_rtdetr_onnx(self,
|
| 1701 |
+
image_path: str = None,
|
| 1702 |
+
image: np.ndarray = None,
|
| 1703 |
+
confidence: float = 0.3,
|
| 1704 |
+
return_all_bubbles: bool = False) -> Any:
|
| 1705 |
+
"""Detect using RT-DETR ONNX backend.
|
| 1706 |
+
Returns bubbles list if return_all_bubbles else dict by classes similar to PyTorch path.
|
| 1707 |
+
"""
|
| 1708 |
+
if not self.rtdetr_onnx_loaded or self.rtdetr_onnx_session is None:
|
| 1709 |
+
logger.warning("RT-DETR ONNX not loaded")
|
| 1710 |
+
return [] if return_all_bubbles else {'bubbles': [], 'text_bubbles': [], 'text_free': []}
|
| 1711 |
+
try:
|
| 1712 |
+
# Acquire image
|
| 1713 |
+
if image_path is not None:
|
| 1714 |
+
import cv2
|
| 1715 |
+
image = cv2.imread(image_path)
|
| 1716 |
+
if image is None:
|
| 1717 |
+
raise RuntimeError(f"Failed to read image: {image_path}")
|
| 1718 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 1719 |
+
else:
|
| 1720 |
+
if image is None:
|
| 1721 |
+
raise RuntimeError("No image provided")
|
| 1722 |
+
# Assume image is BGR np.ndarray if from OpenCV
|
| 1723 |
+
try:
|
| 1724 |
+
import cv2
|
| 1725 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 1726 |
+
except Exception:
|
| 1727 |
+
image_rgb = image
|
| 1728 |
+
|
| 1729 |
+
# To PIL then resize 640x640 as in reference
|
| 1730 |
+
from PIL import Image as _PILImage
|
| 1731 |
+
pil_image = _PILImage.fromarray(image_rgb)
|
| 1732 |
+
im_resized = pil_image.resize((640, 640))
|
| 1733 |
+
arr = np.asarray(im_resized, dtype=np.float32) / 255.0
|
| 1734 |
+
arr = np.transpose(arr, (2, 0, 1)) # (3,H,W)
|
| 1735 |
+
im_data = arr[np.newaxis, ...]
|
| 1736 |
+
|
| 1737 |
+
w, h = pil_image.size
|
| 1738 |
+
orig_size = np.array([[w, h]], dtype=np.int64)
|
| 1739 |
+
|
| 1740 |
+
# Run with a concurrency guard to prevent device hangs and limit memory usage
|
| 1741 |
+
# Apply semaphore for ALL providers (not just DML) to control concurrency
|
| 1742 |
+
providers = BubbleDetector._rtdetr_onnx_providers or []
|
| 1743 |
+
def _do_run(session):
|
| 1744 |
+
return session.run(None, {
|
| 1745 |
+
'images': im_data,
|
| 1746 |
+
'orig_target_sizes': orig_size
|
| 1747 |
+
})
|
| 1748 |
+
|
| 1749 |
+
# Always use semaphore to limit concurrent RT-DETR calls
|
| 1750 |
+
acquired = False
|
| 1751 |
+
try:
|
| 1752 |
+
BubbleDetector._rtdetr_onnx_sema.acquire()
|
| 1753 |
+
acquired = True
|
| 1754 |
+
|
| 1755 |
+
# Special DML error handling
|
| 1756 |
+
if 'DmlExecutionProvider' in providers:
|
| 1757 |
+
try:
|
| 1758 |
+
outputs = _do_run(self.rtdetr_onnx_session)
|
| 1759 |
+
except Exception as dml_err:
|
| 1760 |
+
msg = str(dml_err)
|
| 1761 |
+
if '887A0005' in msg or '887A0006' in msg or 'Dml' in msg:
|
| 1762 |
+
# Rebuild CPU session and retry once
|
| 1763 |
+
try:
|
| 1764 |
+
base_path = BubbleDetector._rtdetr_onnx_model_path
|
| 1765 |
+
if base_path:
|
| 1766 |
+
so = ort.SessionOptions()
|
| 1767 |
+
so.enable_mem_pattern = False
|
| 1768 |
+
so.enable_cpu_mem_arena = False
|
| 1769 |
+
cpu_providers = ['CPUExecutionProvider']
|
| 1770 |
+
# Serialize rebuild
|
| 1771 |
+
with BubbleDetector._rtdetr_onnx_init_lock:
|
| 1772 |
+
sess = ort.InferenceSession(base_path, providers=cpu_providers, sess_options=so)
|
| 1773 |
+
BubbleDetector._rtdetr_onnx_shared_session = sess
|
| 1774 |
+
BubbleDetector._rtdetr_onnx_providers = cpu_providers
|
| 1775 |
+
self.rtdetr_onnx_session = sess
|
| 1776 |
+
outputs = _do_run(self.rtdetr_onnx_session)
|
| 1777 |
+
else:
|
| 1778 |
+
raise
|
| 1779 |
+
except Exception:
|
| 1780 |
+
raise
|
| 1781 |
+
else:
|
| 1782 |
+
raise
|
| 1783 |
+
else:
|
| 1784 |
+
# Non-DML providers - just run directly
|
| 1785 |
+
outputs = _do_run(self.rtdetr_onnx_session)
|
| 1786 |
+
finally:
|
| 1787 |
+
if acquired:
|
| 1788 |
+
try:
|
| 1789 |
+
BubbleDetector._rtdetr_onnx_sema.release()
|
| 1790 |
+
except Exception:
|
| 1791 |
+
pass
|
| 1792 |
+
|
| 1793 |
+
# outputs expected: labels, boxes, scores
|
| 1794 |
+
labels, boxes, scores = outputs[:3]
|
| 1795 |
+
if labels.ndim == 2 and labels.shape[0] == 1:
|
| 1796 |
+
labels = labels[0]
|
| 1797 |
+
if scores.ndim == 2 and scores.shape[0] == 1:
|
| 1798 |
+
scores = scores[0]
|
| 1799 |
+
if boxes.ndim == 3 and boxes.shape[0] == 1:
|
| 1800 |
+
boxes = boxes[0]
|
| 1801 |
+
|
| 1802 |
+
# Apply NMS to remove duplicate detections
|
| 1803 |
+
# Group detections by class and apply NMS per class
|
| 1804 |
+
class_detections = {self.CLASS_BUBBLE: [], self.CLASS_TEXT_BUBBLE: [], self.CLASS_TEXT_FREE: []}
|
| 1805 |
+
|
| 1806 |
+
for lab, box, scr in zip(labels, boxes, scores):
|
| 1807 |
+
if float(scr) < float(confidence):
|
| 1808 |
+
continue
|
| 1809 |
+
label_id = int(lab)
|
| 1810 |
+
if label_id in class_detections:
|
| 1811 |
+
x1, y1, x2, y2 = map(float, box)
|
| 1812 |
+
class_detections[label_id].append((x1, y1, x2, y2, float(scr)))
|
| 1813 |
+
|
| 1814 |
+
# Apply NMS per class to remove duplicates
|
| 1815 |
+
def compute_iou(box1, box2):
|
| 1816 |
+
"""Compute IoU between two boxes (x1, y1, x2, y2)"""
|
| 1817 |
+
x1_1, y1_1, x2_1, y2_1 = box1[:4]
|
| 1818 |
+
x1_2, y1_2, x2_2, y2_2 = box2[:4]
|
| 1819 |
+
|
| 1820 |
+
# Intersection
|
| 1821 |
+
x_left = max(x1_1, x1_2)
|
| 1822 |
+
y_top = max(y1_1, y1_2)
|
| 1823 |
+
x_right = min(x2_1, x2_2)
|
| 1824 |
+
y_bottom = min(y2_1, y2_2)
|
| 1825 |
+
|
| 1826 |
+
if x_right < x_left or y_bottom < y_top:
|
| 1827 |
+
return 0.0
|
| 1828 |
+
|
| 1829 |
+
intersection = (x_right - x_left) * (y_bottom - y_top)
|
| 1830 |
+
|
| 1831 |
+
# Union
|
| 1832 |
+
area1 = (x2_1 - x1_1) * (y2_1 - y1_1)
|
| 1833 |
+
area2 = (x2_2 - x1_2) * (y2_2 - y1_2)
|
| 1834 |
+
union = area1 + area2 - intersection
|
| 1835 |
+
|
| 1836 |
+
return intersection / union if union > 0 else 0.0
|
| 1837 |
+
|
| 1838 |
+
def apply_nms(boxes_with_scores, iou_threshold=0.45):
|
| 1839 |
+
"""Apply Non-Maximum Suppression"""
|
| 1840 |
+
if not boxes_with_scores:
|
| 1841 |
+
return []
|
| 1842 |
+
|
| 1843 |
+
# Sort by score (descending)
|
| 1844 |
+
sorted_boxes = sorted(boxes_with_scores, key=lambda x: x[4], reverse=True)
|
| 1845 |
+
keep = []
|
| 1846 |
+
|
| 1847 |
+
while sorted_boxes:
|
| 1848 |
+
# Keep the box with highest score
|
| 1849 |
+
current = sorted_boxes.pop(0)
|
| 1850 |
+
keep.append(current)
|
| 1851 |
+
|
| 1852 |
+
# Remove boxes with high IoU
|
| 1853 |
+
sorted_boxes = [box for box in sorted_boxes if compute_iou(current, box) < iou_threshold]
|
| 1854 |
+
|
| 1855 |
+
return keep
|
| 1856 |
+
|
| 1857 |
+
# Apply NMS and build final detections
|
| 1858 |
+
detections = {'bubbles': [], 'text_bubbles': [], 'text_free': []}
|
| 1859 |
+
bubbles_all = []
|
| 1860 |
+
|
| 1861 |
+
for class_id, boxes_list in class_detections.items():
|
| 1862 |
+
nms_boxes = apply_nms(boxes_list, iou_threshold=self.default_iou_threshold)
|
| 1863 |
+
|
| 1864 |
+
for x1, y1, x2, y2, scr in nms_boxes:
|
| 1865 |
+
bbox = (int(x1), int(y1), int(x2 - x1), int(y2 - y1))
|
| 1866 |
+
|
| 1867 |
+
if class_id == self.CLASS_BUBBLE:
|
| 1868 |
+
detections['bubbles'].append(bbox)
|
| 1869 |
+
bubbles_all.append(bbox)
|
| 1870 |
+
elif class_id == self.CLASS_TEXT_BUBBLE:
|
| 1871 |
+
detections['text_bubbles'].append(bbox)
|
| 1872 |
+
bubbles_all.append(bbox)
|
| 1873 |
+
elif class_id == self.CLASS_TEXT_FREE:
|
| 1874 |
+
detections['text_free'].append(bbox)
|
| 1875 |
+
|
| 1876 |
+
return bubbles_all if return_all_bubbles else detections
|
| 1877 |
+
except Exception as e:
|
| 1878 |
+
logger.error(f"RT-DETR ONNX detection failed: {e}")
|
| 1879 |
+
return [] if return_all_bubbles else {'bubbles': [], 'text_bubbles': [], 'text_free': []}
|
| 1880 |
+
|
| 1881 |
+
|
| 1882 |
+
# Standalone utility functions
|
| 1883 |
+
def download_model_from_huggingface(repo_id: str = "ogkalu/comic-speech-bubble-detector-yolov8m",
|
| 1884 |
+
filename: str = "comic-speech-bubble-detector-yolov8m.pt",
|
| 1885 |
+
cache_dir: str = "models") -> str:
|
| 1886 |
+
"""
|
| 1887 |
+
Download model from Hugging Face Hub.
|
| 1888 |
+
|
| 1889 |
+
Args:
|
| 1890 |
+
repo_id: Hugging Face repository ID
|
| 1891 |
+
filename: Model filename in the repository
|
| 1892 |
+
cache_dir: Local directory to cache the model
|
| 1893 |
+
|
| 1894 |
+
Returns:
|
| 1895 |
+
Path to downloaded model file
|
| 1896 |
+
"""
|
| 1897 |
+
try:
|
| 1898 |
+
from huggingface_hub import hf_hub_download
|
| 1899 |
+
|
| 1900 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 1901 |
+
|
| 1902 |
+
logger.info(f"📥 Downloading {filename} from {repo_id}...")
|
| 1903 |
+
|
| 1904 |
+
model_path = hf_hub_download(
|
| 1905 |
+
repo_id=repo_id,
|
| 1906 |
+
filename=filename,
|
| 1907 |
+
cache_dir=cache_dir,
|
| 1908 |
+
local_dir=cache_dir
|
| 1909 |
+
)
|
| 1910 |
+
|
| 1911 |
+
logger.info(f"✅ Model downloaded to: {model_path}")
|
| 1912 |
+
return model_path
|
| 1913 |
+
|
| 1914 |
+
except ImportError:
|
| 1915 |
+
logger.error("huggingface-hub package required. Install with: pip install huggingface-hub")
|
| 1916 |
+
return None
|
| 1917 |
+
except Exception as e:
|
| 1918 |
+
logger.error(f"Download failed: {e}")
|
| 1919 |
+
return None
|
| 1920 |
+
|
| 1921 |
+
|
| 1922 |
+
def download_rtdetr_model(cache_dir: str = "models") -> bool:
|
| 1923 |
+
"""
|
| 1924 |
+
Download RT-DETR model for advanced detection.
|
| 1925 |
+
|
| 1926 |
+
Args:
|
| 1927 |
+
cache_dir: Directory to cache the model
|
| 1928 |
+
|
| 1929 |
+
Returns:
|
| 1930 |
+
True if successful
|
| 1931 |
+
"""
|
| 1932 |
+
if not TRANSFORMERS_AVAILABLE:
|
| 1933 |
+
logger.error("Transformers required. Install with: pip install transformers")
|
| 1934 |
+
return False
|
| 1935 |
+
|
| 1936 |
+
try:
|
| 1937 |
+
logger.info("📥 Downloading RT-DETR model...")
|
| 1938 |
+
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
|
| 1939 |
+
|
| 1940 |
+
# This will download and cache the model
|
| 1941 |
+
processor = RTDetrImageProcessor.from_pretrained(
|
| 1942 |
+
"ogkalu/comic-text-and-bubble-detector",
|
| 1943 |
+
cache_dir=cache_dir
|
| 1944 |
+
)
|
| 1945 |
+
model = RTDetrForObjectDetection.from_pretrained(
|
| 1946 |
+
"ogkalu/comic-text-and-bubble-detector",
|
| 1947 |
+
cache_dir=cache_dir
|
| 1948 |
+
)
|
| 1949 |
+
|
| 1950 |
+
logger.info("✅ RT-DETR model downloaded successfully")
|
| 1951 |
+
return True
|
| 1952 |
+
|
| 1953 |
+
except Exception as e:
|
| 1954 |
+
logger.error(f"Download failed: {e}")
|
| 1955 |
+
return False
|
| 1956 |
+
|
| 1957 |
+
|
| 1958 |
+
# Example usage and testing
|
| 1959 |
+
if __name__ == "__main__":
|
| 1960 |
+
import sys
|
| 1961 |
+
|
| 1962 |
+
# Create detector
|
| 1963 |
+
detector = BubbleDetector()
|
| 1964 |
+
|
| 1965 |
+
if len(sys.argv) > 1:
|
| 1966 |
+
if sys.argv[1] == "download":
|
| 1967 |
+
# Download model from Hugging Face
|
| 1968 |
+
model_path = download_model_from_huggingface()
|
| 1969 |
+
if model_path:
|
| 1970 |
+
print(f"YOLOv8 model downloaded to: {model_path}")
|
| 1971 |
+
|
| 1972 |
+
# Also download RT-DETR
|
| 1973 |
+
if download_rtdetr_model():
|
| 1974 |
+
print("RT-DETR model downloaded")
|
| 1975 |
+
|
| 1976 |
+
elif sys.argv[1] == "detect" and len(sys.argv) > 3:
|
| 1977 |
+
# Detect bubbles in an image
|
| 1978 |
+
model_path = sys.argv[2]
|
| 1979 |
+
image_path = sys.argv[3]
|
| 1980 |
+
|
| 1981 |
+
# Load appropriate model
|
| 1982 |
+
if 'rtdetr' in model_path.lower():
|
| 1983 |
+
if detector.load_rtdetr_model():
|
| 1984 |
+
# Use RT-DETR
|
| 1985 |
+
results = detector.detect_with_rtdetr(image_path)
|
| 1986 |
+
print(f"RT-DETR Detection:")
|
| 1987 |
+
print(f" Empty bubbles: {len(results['bubbles'])}")
|
| 1988 |
+
print(f" Text bubbles: {len(results['text_bubbles'])}")
|
| 1989 |
+
print(f" Free text: {len(results['text_free'])}")
|
| 1990 |
+
else:
|
| 1991 |
+
if detector.load_model(model_path):
|
| 1992 |
+
bubbles = detector.detect_bubbles(image_path, confidence=0.5)
|
| 1993 |
+
print(f"YOLOv8 detected {len(bubbles)} bubbles:")
|
| 1994 |
+
for i, (x, y, w, h) in enumerate(bubbles):
|
| 1995 |
+
print(f" Bubble {i+1}: position=({x},{y}) size=({w}x{h})")
|
| 1996 |
+
|
| 1997 |
+
# Optionally visualize
|
| 1998 |
+
if len(sys.argv) > 4:
|
| 1999 |
+
output_path = sys.argv[4]
|
| 2000 |
+
detector.visualize_detections(image_path, output_path=output_path,
|
| 2001 |
+
use_rtdetr='rtdetr' in model_path.lower())
|
| 2002 |
+
|
| 2003 |
+
elif sys.argv[1] == "test-both" and len(sys.argv) > 2:
|
| 2004 |
+
# Test both models
|
| 2005 |
+
image_path = sys.argv[2]
|
| 2006 |
+
|
| 2007 |
+
# Load YOLOv8
|
| 2008 |
+
yolo_path = "models/comic-speech-bubble-detector-yolov8m.pt"
|
| 2009 |
+
if os.path.exists(yolo_path):
|
| 2010 |
+
detector.load_model(yolo_path)
|
| 2011 |
+
yolo_bubbles = detector.detect_bubbles(image_path, use_rtdetr=False)
|
| 2012 |
+
print(f"YOLOv8: {len(yolo_bubbles)} bubbles")
|
| 2013 |
+
|
| 2014 |
+
# Load RT-DETR
|
| 2015 |
+
if detector.load_rtdetr_model():
|
| 2016 |
+
rtdetr_bubbles = detector.detect_bubbles(image_path, use_rtdetr=True)
|
| 2017 |
+
print(f"RT-DETR: {len(rtdetr_bubbles)} bubbles")
|
| 2018 |
+
|
| 2019 |
+
else:
|
| 2020 |
+
print("Usage:")
|
| 2021 |
+
print(" python bubble_detector.py download")
|
| 2022 |
+
print(" python bubble_detector.py detect <model_path> <image_path> [output_path]")
|
| 2023 |
+
print(" python bubble_detector.py test-both <image_path>")
|
| 2024 |
+
|
| 2025 |
+
else:
|
| 2026 |
+
print("Bubble Detector Module (YOLOv8 + RT-DETR)")
|
| 2027 |
+
print("Usage:")
|
| 2028 |
+
print(" python bubble_detector.py download")
|
| 2029 |
+
print(" python bubble_detector.py detect <model_path> <image_path> [output_path]")
|
| 2030 |
+
print(" python bubble_detector.py test-both <image_path>")
|
hyphen_textwrap.py
ADDED
|
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified textwrap module to add hyphens whenever it breaks a long word
|
| 2 |
+
# https://github.com/python/cpython/blob/main/Lib/textwrap.py
|
| 3 |
+
|
| 4 |
+
"""Text wrapping and filling with improved hyphenation support.
|
| 5 |
+
|
| 6 |
+
This module is adapted from comic-translate's enhanced textwrap implementation.
|
| 7 |
+
It provides better hyphenation behavior when breaking long words across lines.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
# Copyright (C) 1999-2001 Gregory P. Ward.
|
| 11 |
+
# Copyright (C) 2002, 2003 Python Software Foundation.
|
| 12 |
+
# Written by Greg Ward <gward@python.net>
|
| 13 |
+
|
| 14 |
+
import re
|
| 15 |
+
|
| 16 |
+
__all__ = ['TextWrapper', 'wrap', 'fill', 'dedent', 'indent', 'shorten']
|
| 17 |
+
|
| 18 |
+
# Hardcode the recognized whitespace characters to the US-ASCII
|
| 19 |
+
# whitespace characters. The main reason for doing this is that
|
| 20 |
+
# some Unicode spaces (like \u00a0) are non-breaking whitespaces.
|
| 21 |
+
_whitespace = '\t\n\x0b\x0c\r '
|
| 22 |
+
|
| 23 |
+
class TextWrapper:
|
| 24 |
+
"""
|
| 25 |
+
Object for wrapping/filling text. The public interface consists of
|
| 26 |
+
the wrap() and fill() methods; the other methods are just there for
|
| 27 |
+
subclasses to override in order to tweak the default behaviour.
|
| 28 |
+
If you want to completely replace the main wrapping algorithm,
|
| 29 |
+
you'll probably have to override _wrap_chunks().
|
| 30 |
+
|
| 31 |
+
Several instance attributes control various aspects of wrapping:
|
| 32 |
+
width (default: 70)
|
| 33 |
+
the maximum width of wrapped lines (unless break_long_words
|
| 34 |
+
is false)
|
| 35 |
+
initial_indent (default: "")
|
| 36 |
+
string that will be prepended to the first line of wrapped
|
| 37 |
+
output. Counts towards the line's width.
|
| 38 |
+
subsequent_indent (default: "")
|
| 39 |
+
string that will be prepended to all lines save the first
|
| 40 |
+
of wrapped output; also counts towards each line's width.
|
| 41 |
+
expand_tabs (default: true)
|
| 42 |
+
Expand tabs in input text to spaces before further processing.
|
| 43 |
+
Each tab will become 0 .. 'tabsize' spaces, depending on its position
|
| 44 |
+
in its line. If false, each tab is treated as a single character.
|
| 45 |
+
tabsize (default: 8)
|
| 46 |
+
Expand tabs in input text to 0 .. 'tabsize' spaces, unless
|
| 47 |
+
'expand_tabs' is false.
|
| 48 |
+
replace_whitespace (default: true)
|
| 49 |
+
Replace all whitespace characters in the input text by spaces
|
| 50 |
+
after tab expansion. Note that if expand_tabs is false and
|
| 51 |
+
replace_whitespace is true, every tab will be converted to a
|
| 52 |
+
single space!
|
| 53 |
+
fix_sentence_endings (default: false)
|
| 54 |
+
Ensure that sentence-ending punctuation is always followed
|
| 55 |
+
by two spaces. Off by default because the algorithm is
|
| 56 |
+
(unavoidably) imperfect.
|
| 57 |
+
break_long_words (default: true)
|
| 58 |
+
Break words longer than 'width'. If false, those words will not
|
| 59 |
+
be broken, and some lines might be longer than 'width'.
|
| 60 |
+
break_on_hyphens (default: true)
|
| 61 |
+
Allow breaking hyphenated words. If true, wrapping will occur
|
| 62 |
+
preferably on whitespaces and right after hyphens part of
|
| 63 |
+
compound words.
|
| 64 |
+
drop_whitespace (default: true)
|
| 65 |
+
Drop leading and trailing whitespace from lines.
|
| 66 |
+
max_lines (default: None)
|
| 67 |
+
Truncate wrapped lines.
|
| 68 |
+
placeholder (default: ' [...]')
|
| 69 |
+
Append to the last line of truncated text.
|
| 70 |
+
hyphenate_broken_words (default: True)
|
| 71 |
+
Add hyphens when breaking long words across lines.
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
unicode_whitespace_trans = dict.fromkeys(map(ord, _whitespace), ord(' '))
|
| 75 |
+
|
| 76 |
+
# This funky little regex is just the trick for splitting
|
| 77 |
+
# text up into word-wrappable chunks. E.g.
|
| 78 |
+
# "Hello there -- you goof-ball, use the -b option!"
|
| 79 |
+
# splits into
|
| 80 |
+
# Hello/ /there/ /--/ /you/ /goof-/ball,/ /use/ /the/ /-b/ /option!
|
| 81 |
+
# (after stripping out empty strings).
|
| 82 |
+
word_punct = r'[\w!"\'\&.,?]'
|
| 83 |
+
letter = r'[^\d\W]'
|
| 84 |
+
whitespace = r'[%s]' % re.escape(_whitespace)
|
| 85 |
+
nowhitespace = '[^' + whitespace[1:]
|
| 86 |
+
wordsep_re = re.compile(r'''
|
| 87 |
+
( # any whitespace
|
| 88 |
+
%(ws)s+
|
| 89 |
+
| # em-dash between words
|
| 90 |
+
(?<=%(wp)s) -{2,} (?=\w)
|
| 91 |
+
| # word, possibly hyphenated
|
| 92 |
+
%(nws)s+? (?:
|
| 93 |
+
# hyphenated word
|
| 94 |
+
-(?: (?<=%(lt)s{2}-) | (?<=%(lt)s-%(lt)s-))
|
| 95 |
+
(?= %(lt)s -? %(lt)s)
|
| 96 |
+
| # end of word
|
| 97 |
+
(?=%(ws)s|\Z)
|
| 98 |
+
| # em-dash
|
| 99 |
+
(?<=%(wp)s) (?=-{2,}\w)
|
| 100 |
+
)
|
| 101 |
+
)''' % {'wp': word_punct, 'lt': letter,
|
| 102 |
+
'ws': whitespace, 'nws': nowhitespace},
|
| 103 |
+
re.VERBOSE)
|
| 104 |
+
del word_punct, letter, nowhitespace
|
| 105 |
+
|
| 106 |
+
# This less funky little regex just split on recognized spaces. E.g.
|
| 107 |
+
# "Hello there -- you goof-ball, use the -b option!"
|
| 108 |
+
# splits into
|
| 109 |
+
# Hello/ /there/ /--/ /you/ /goof-ball,/ /use/ /the/ /-b/ /option!/
|
| 110 |
+
wordsep_simple_re = re.compile(r'(%s+)' % whitespace)
|
| 111 |
+
del whitespace
|
| 112 |
+
|
| 113 |
+
# XXX this is not locale- or charset-aware -- string.lowercase
|
| 114 |
+
# is US-ASCII only (and therefore English-only)
|
| 115 |
+
sentence_end_re = re.compile(r'[a-z]' # lowercase letter
|
| 116 |
+
r'[\.\!\?]' # sentence-ending punct.
|
| 117 |
+
r'[\"\']?' # optional end-of-quote
|
| 118 |
+
r'\Z') # end of chunk
|
| 119 |
+
|
| 120 |
+
def __init__(self,
|
| 121 |
+
width=70,
|
| 122 |
+
initial_indent="",
|
| 123 |
+
subsequent_indent="",
|
| 124 |
+
expand_tabs=True,
|
| 125 |
+
replace_whitespace=True,
|
| 126 |
+
fix_sentence_endings=False,
|
| 127 |
+
break_long_words=True,
|
| 128 |
+
drop_whitespace=True,
|
| 129 |
+
break_on_hyphens=True,
|
| 130 |
+
hyphenate_broken_words=True,
|
| 131 |
+
tabsize=8,
|
| 132 |
+
*,
|
| 133 |
+
max_lines=None,
|
| 134 |
+
placeholder=' [...]'):
|
| 135 |
+
self.width = width
|
| 136 |
+
self.initial_indent = initial_indent
|
| 137 |
+
self.subsequent_indent = subsequent_indent
|
| 138 |
+
self.expand_tabs = expand_tabs
|
| 139 |
+
self.replace_whitespace = replace_whitespace
|
| 140 |
+
self.fix_sentence_endings = fix_sentence_endings
|
| 141 |
+
self.break_long_words = break_long_words
|
| 142 |
+
self.drop_whitespace = drop_whitespace
|
| 143 |
+
self.break_on_hyphens = break_on_hyphens
|
| 144 |
+
self.tabsize = tabsize
|
| 145 |
+
self.max_lines = max_lines
|
| 146 |
+
self.placeholder = placeholder
|
| 147 |
+
self.hyphenate_broken_words = hyphenate_broken_words
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
# -- Private methods -----------------------------------------------
|
| 151 |
+
# (possibly useful for subclasses to override)
|
| 152 |
+
|
| 153 |
+
def _munge_whitespace(self, text):
|
| 154 |
+
"""_munge_whitespace(text : string) -> string
|
| 155 |
+
|
| 156 |
+
Munge whitespace in text: expand tabs and convert all other
|
| 157 |
+
whitespace characters to spaces. Eg. " foo\\tbar\\n\\nbaz"
|
| 158 |
+
becomes " foo bar baz".
|
| 159 |
+
"""
|
| 160 |
+
if self.expand_tabs:
|
| 161 |
+
text = text.expandtabs(self.tabsize)
|
| 162 |
+
if self.replace_whitespace:
|
| 163 |
+
text = text.translate(self.unicode_whitespace_trans)
|
| 164 |
+
return text
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def _split(self, text):
|
| 168 |
+
"""_split(text : string) -> [string]
|
| 169 |
+
|
| 170 |
+
Split the text to wrap into indivisible chunks. Chunks are
|
| 171 |
+
not quite the same as words; see _wrap_chunks() for full
|
| 172 |
+
details. As an example, the text
|
| 173 |
+
Look, goof-ball -- use the -b option!
|
| 174 |
+
breaks into the following chunks:
|
| 175 |
+
'Look,', ' ', 'goof-', 'ball', ' ', '--', ' ',
|
| 176 |
+
'use', ' ', 'the', ' ', '-b', ' ', 'option!'
|
| 177 |
+
if break_on_hyphens is True, or in:
|
| 178 |
+
'Look,', ' ', 'goof-ball', ' ', '--', ' ',
|
| 179 |
+
'use', ' ', 'the', ' ', '-b', ' ', option!'
|
| 180 |
+
otherwise.
|
| 181 |
+
"""
|
| 182 |
+
if self.break_on_hyphens is True:
|
| 183 |
+
chunks = self.wordsep_re.split(text)
|
| 184 |
+
else:
|
| 185 |
+
chunks = self.wordsep_simple_re.split(text)
|
| 186 |
+
chunks = [c for c in chunks if c]
|
| 187 |
+
|
| 188 |
+
return chunks
|
| 189 |
+
|
| 190 |
+
def _fix_sentence_endings(self, chunks):
|
| 191 |
+
"""_fix_sentence_endings(chunks : [string])
|
| 192 |
+
|
| 193 |
+
Correct for sentence endings buried in 'chunks'. Eg. when the
|
| 194 |
+
original text contains "... foo.\\nBar ...", munge_whitespace()
|
| 195 |
+
and split() will convert that to [..., "foo.", " ", "Bar", ...]
|
| 196 |
+
which has one too few spaces; this method simply changes the one
|
| 197 |
+
space to two.
|
| 198 |
+
"""
|
| 199 |
+
i = 0
|
| 200 |
+
patsearch = self.sentence_end_re.search
|
| 201 |
+
while i < len(chunks)-1:
|
| 202 |
+
if chunks[i+1] == " " and patsearch(chunks[i]):
|
| 203 |
+
chunks[i+1] = " "
|
| 204 |
+
i += 2
|
| 205 |
+
else:
|
| 206 |
+
i += 1
|
| 207 |
+
|
| 208 |
+
def _handle_long_word(self, reversed_chunks, cur_line, cur_len, width):
|
| 209 |
+
"""_handle_long_word(chunks : [string],
|
| 210 |
+
cur_line : [string],
|
| 211 |
+
cur_len : int, width : int)
|
| 212 |
+
|
| 213 |
+
Handle a chunk of text (most likely a word, not whitespace) that
|
| 214 |
+
is too long to fit in any line.
|
| 215 |
+
"""
|
| 216 |
+
# Figure out when indent is larger than the specified width, and make
|
| 217 |
+
# sure at least one character is stripped off on every pass
|
| 218 |
+
if width < 1:
|
| 219 |
+
space_left = 1
|
| 220 |
+
else:
|
| 221 |
+
space_left = width - cur_len
|
| 222 |
+
|
| 223 |
+
# If we're allowed to break long words, then do so: put as much
|
| 224 |
+
# of the next chunk onto the current line as will fit.
|
| 225 |
+
if self.break_long_words:
|
| 226 |
+
end = space_left
|
| 227 |
+
chunk = reversed_chunks[-1]
|
| 228 |
+
if self.break_on_hyphens and len(chunk) > space_left:
|
| 229 |
+
# break after last hyphen, but only if there are
|
| 230 |
+
# non-hyphens before it
|
| 231 |
+
hyphen = chunk.rfind('-', 0, space_left)
|
| 232 |
+
if hyphen > 0 and any(c != '-' for c in chunk[:hyphen]):
|
| 233 |
+
end = hyphen + 1
|
| 234 |
+
|
| 235 |
+
if chunk[:end]:
|
| 236 |
+
cur_line.append(chunk[:end])
|
| 237 |
+
# Now adds a hyphen whenever a long word is split to the next line
|
| 238 |
+
# unless certain chracters already exists at the split
|
| 239 |
+
if self.hyphenate_broken_words and chunk[:end][-1] not in ['-','.',',']:
|
| 240 |
+
cur_line.append('-')
|
| 241 |
+
reversed_chunks[-1] = chunk[end:]
|
| 242 |
+
|
| 243 |
+
# Otherwise, we have to preserve the long word intact. Only add
|
| 244 |
+
# it to the current line if there's nothing already there --
|
| 245 |
+
# that minimizes how much we violate the width constraint.
|
| 246 |
+
elif not cur_line:
|
| 247 |
+
cur_line.append(reversed_chunks.pop())
|
| 248 |
+
|
| 249 |
+
# If we're not allowed to break long words, and there's already
|
| 250 |
+
# text on the current line, do nothing. Next time through the
|
| 251 |
+
# main loop of _wrap_chunks(), we'll wind up here again, but
|
| 252 |
+
# cur_len will be zero, so the next line will be entirely
|
| 253 |
+
# devoted to the long word that we can't handle right now.
|
| 254 |
+
|
| 255 |
+
def _wrap_chunks(self, chunks):
|
| 256 |
+
"""_wrap_chunks(chunks : [string]) -> [string]
|
| 257 |
+
|
| 258 |
+
Wrap a sequence of text chunks and return a list of lines of
|
| 259 |
+
length 'self.width' or less. (If 'break_long_words' is false,
|
| 260 |
+
some lines may be longer than this.) Chunks correspond roughly
|
| 261 |
+
to words and the whitespace between them: each chunk is
|
| 262 |
+
indivisible (modulo 'break_long_words'), but a line break can
|
| 263 |
+
come between any two chunks. Chunks should not have internal
|
| 264 |
+
whitespace; ie. a chunk is either all whitespace or a "word".
|
| 265 |
+
Whitespace chunks will be removed from the beginning and end of
|
| 266 |
+
lines, but apart from that whitespace is preserved.
|
| 267 |
+
"""
|
| 268 |
+
lines = []
|
| 269 |
+
if self.width <= 0:
|
| 270 |
+
raise ValueError("invalid width %r (must be > 0)" % self.width)
|
| 271 |
+
if self.max_lines is not None:
|
| 272 |
+
if self.max_lines > 1:
|
| 273 |
+
indent = self.subsequent_indent
|
| 274 |
+
else:
|
| 275 |
+
indent = self.initial_indent
|
| 276 |
+
if len(indent) + len(self.placeholder.lstrip()) > self.width:
|
| 277 |
+
raise ValueError("placeholder too large for max width")
|
| 278 |
+
|
| 279 |
+
# Arrange in reverse order so items can be efficiently popped
|
| 280 |
+
# from a stack of chucks.
|
| 281 |
+
chunks.reverse()
|
| 282 |
+
|
| 283 |
+
while chunks:
|
| 284 |
+
|
| 285 |
+
# Start the list of chunks that will make up the current line.
|
| 286 |
+
# cur_len is just the length of all the chunks in cur_line.
|
| 287 |
+
cur_line = []
|
| 288 |
+
cur_len = 0
|
| 289 |
+
|
| 290 |
+
# Figure out which static string will prefix this line.
|
| 291 |
+
if lines:
|
| 292 |
+
indent = self.subsequent_indent
|
| 293 |
+
else:
|
| 294 |
+
indent = self.initial_indent
|
| 295 |
+
|
| 296 |
+
# Maximum width for this line.
|
| 297 |
+
width = self.width - len(indent)
|
| 298 |
+
|
| 299 |
+
# First chunk on line is whitespace -- drop it, unless this
|
| 300 |
+
# is the very beginning of the text (ie. no lines started yet).
|
| 301 |
+
if self.drop_whitespace and chunks[-1].strip() == '' and lines:
|
| 302 |
+
del chunks[-1]
|
| 303 |
+
|
| 304 |
+
while chunks:
|
| 305 |
+
l = len(chunks[-1])
|
| 306 |
+
|
| 307 |
+
# Can at least squeeze this chunk onto the current line.
|
| 308 |
+
if cur_len + l <= width:
|
| 309 |
+
cur_line.append(chunks.pop())
|
| 310 |
+
cur_len += l
|
| 311 |
+
|
| 312 |
+
# Nope, this line is full.
|
| 313 |
+
else:
|
| 314 |
+
break
|
| 315 |
+
|
| 316 |
+
# The current line is full, and the next chunk is too big to
|
| 317 |
+
# fit on *any* line (not just this one).
|
| 318 |
+
if chunks and len(chunks[-1]) > width:
|
| 319 |
+
self._handle_long_word(chunks, cur_line, cur_len, width)
|
| 320 |
+
cur_len = sum(map(len, cur_line))
|
| 321 |
+
|
| 322 |
+
# If the last chunk on this line is all whitespace, drop it.
|
| 323 |
+
if self.drop_whitespace and cur_line and cur_line[-1].strip() == '':
|
| 324 |
+
cur_len -= len(cur_line[-1])
|
| 325 |
+
del cur_line[-1]
|
| 326 |
+
|
| 327 |
+
if cur_line:
|
| 328 |
+
if (self.max_lines is None or
|
| 329 |
+
len(lines) + 1 < self.max_lines or
|
| 330 |
+
(not chunks or
|
| 331 |
+
self.drop_whitespace and
|
| 332 |
+
len(chunks) == 1 and
|
| 333 |
+
not chunks[0].strip()) and cur_len <= width):
|
| 334 |
+
# Convert current line back to a string and store it in
|
| 335 |
+
# list of all lines (return value).
|
| 336 |
+
lines.append(indent + ''.join(cur_line))
|
| 337 |
+
else:
|
| 338 |
+
while cur_line:
|
| 339 |
+
if (cur_line[-1].strip() and
|
| 340 |
+
cur_len + len(self.placeholder) <= width):
|
| 341 |
+
cur_line.append(self.placeholder)
|
| 342 |
+
lines.append(indent + ''.join(cur_line))
|
| 343 |
+
break
|
| 344 |
+
cur_len -= len(cur_line[-1])
|
| 345 |
+
del cur_line[-1]
|
| 346 |
+
else:
|
| 347 |
+
if lines:
|
| 348 |
+
prev_line = lines[-1].rstrip()
|
| 349 |
+
if (len(prev_line) + len(self.placeholder) <=
|
| 350 |
+
self.width):
|
| 351 |
+
lines[-1] = prev_line + self.placeholder
|
| 352 |
+
break
|
| 353 |
+
lines.append(indent + self.placeholder.lstrip())
|
| 354 |
+
break
|
| 355 |
+
|
| 356 |
+
return lines
|
| 357 |
+
|
| 358 |
+
def _split_chunks(self, text):
|
| 359 |
+
text = self._munge_whitespace(text)
|
| 360 |
+
return self._split(text)
|
| 361 |
+
|
| 362 |
+
# -- Public interface ----------------------------------------------
|
| 363 |
+
|
| 364 |
+
def wrap(self, text):
|
| 365 |
+
"""wrap(text : string) -> [string]
|
| 366 |
+
|
| 367 |
+
Reformat the single paragraph in 'text' so it fits in lines of
|
| 368 |
+
no more than 'self.width' columns, and return a list of wrapped
|
| 369 |
+
lines. Tabs in 'text' are expanded with string.expandtabs(),
|
| 370 |
+
and all other whitespace characters (including newline) are
|
| 371 |
+
converted to space.
|
| 372 |
+
"""
|
| 373 |
+
chunks = self._split_chunks(text)
|
| 374 |
+
if self.fix_sentence_endings:
|
| 375 |
+
self._fix_sentence_endings(chunks)
|
| 376 |
+
return self._wrap_chunks(chunks)
|
| 377 |
+
|
| 378 |
+
def fill(self, text):
|
| 379 |
+
"""fill(text : string) -> string
|
| 380 |
+
|
| 381 |
+
Reformat the single paragraph in 'text' to fit in lines of no
|
| 382 |
+
more than 'self.width' columns, and return a new string
|
| 383 |
+
containing the entire wrapped paragraph.
|
| 384 |
+
"""
|
| 385 |
+
return "\n".join(self.wrap(text))
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
# -- Convenience interface ---------------------------------------------
|
| 389 |
+
|
| 390 |
+
def wrap(text, width=70, **kwargs):
|
| 391 |
+
"""Wrap a single paragraph of text, returning a list of wrapped lines.
|
| 392 |
+
|
| 393 |
+
Reformat the single paragraph in 'text' so it fits in lines of no
|
| 394 |
+
more than 'width' columns, and return a list of wrapped lines. By
|
| 395 |
+
default, tabs in 'text' are expanded with string.expandtabs(), and
|
| 396 |
+
all other whitespace characters (including newline) are converted to
|
| 397 |
+
space. See TextWrapper class for available keyword args to customize
|
| 398 |
+
wrapping behaviour.
|
| 399 |
+
"""
|
| 400 |
+
w = TextWrapper(width=width, **kwargs)
|
| 401 |
+
return w.wrap(text)
|
| 402 |
+
|
| 403 |
+
def fill(text, width=70, **kwargs):
|
| 404 |
+
"""Fill a single paragraph of text, returning a new string.
|
| 405 |
+
|
| 406 |
+
Reformat the single paragraph in 'text' to fit in lines of no more
|
| 407 |
+
than 'width' columns, and return a new string containing the entire
|
| 408 |
+
wrapped paragraph. As with wrap(), tabs are expanded and other
|
| 409 |
+
whitespace characters converted to space. See TextWrapper class for
|
| 410 |
+
available keyword args to customize wrapping behaviour.
|
| 411 |
+
"""
|
| 412 |
+
w = TextWrapper(width=width, **kwargs)
|
| 413 |
+
return w.fill(text)
|
| 414 |
+
|
| 415 |
+
def shorten(text, width, **kwargs):
|
| 416 |
+
"""Collapse and truncate the given text to fit in the given width.
|
| 417 |
+
|
| 418 |
+
The text first has its whitespace collapsed. If it then fits in
|
| 419 |
+
the *width*, it is returned as is. Otherwise, as many words
|
| 420 |
+
as possible are joined and then the placeholder is appended::
|
| 421 |
+
|
| 422 |
+
>>> textwrap.shorten("Hello world!", width=12)
|
| 423 |
+
'Hello world!'
|
| 424 |
+
>>> textwrap.shorten("Hello world!", width=11)
|
| 425 |
+
'Hello [...]'
|
| 426 |
+
"""
|
| 427 |
+
w = TextWrapper(width=width, max_lines=1, **kwargs)
|
| 428 |
+
return w.fill(' '.join(text.strip().split()))
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
# -- Loosely related functionality -------------------------------------
|
| 432 |
+
|
| 433 |
+
_whitespace_only_re = re.compile('^[ \t]+$', re.MULTILINE)
|
| 434 |
+
_leading_whitespace_re = re.compile('(^[ \t]*)(?:[^ \t\n])', re.MULTILINE)
|
| 435 |
+
|
| 436 |
+
def dedent(text):
|
| 437 |
+
"""Remove any common leading whitespace from every line in `text`.
|
| 438 |
+
|
| 439 |
+
This can be used to make triple-quoted strings line up with the left
|
| 440 |
+
edge of the display, while still presenting them in the source code
|
| 441 |
+
in indented form.
|
| 442 |
+
|
| 443 |
+
Note that tabs and spaces are both treated as whitespace, but they
|
| 444 |
+
are not equal: the lines " hello" and "\\thello" are
|
| 445 |
+
considered to have no common leading whitespace.
|
| 446 |
+
|
| 447 |
+
Entirely blank lines are normalized to a newline character.
|
| 448 |
+
"""
|
| 449 |
+
# Look for the longest leading string of spaces and tabs common to
|
| 450 |
+
# all lines.
|
| 451 |
+
margin = None
|
| 452 |
+
text = _whitespace_only_re.sub('', text)
|
| 453 |
+
indents = _leading_whitespace_re.findall(text)
|
| 454 |
+
for indent in indents:
|
| 455 |
+
if margin is None:
|
| 456 |
+
margin = indent
|
| 457 |
+
|
| 458 |
+
# Current line more deeply indented than previous winner:
|
| 459 |
+
# no change (previous winner is still on top).
|
| 460 |
+
elif indent.startswith(margin):
|
| 461 |
+
pass
|
| 462 |
+
|
| 463 |
+
# Current line consistent with and no deeper than previous winner:
|
| 464 |
+
# it's the new winner.
|
| 465 |
+
elif margin.startswith(indent):
|
| 466 |
+
margin = indent
|
| 467 |
+
|
| 468 |
+
# Find the largest common whitespace between current line and previous
|
| 469 |
+
# winner.
|
| 470 |
+
else:
|
| 471 |
+
for i, (x, y) in enumerate(zip(margin, indent)):
|
| 472 |
+
if x != y:
|
| 473 |
+
margin = margin[:i]
|
| 474 |
+
break
|
| 475 |
+
|
| 476 |
+
# sanity check (testing/debugging only)
|
| 477 |
+
if 0 and margin:
|
| 478 |
+
for line in text.split("\n"):
|
| 479 |
+
assert not line or line.startswith(margin), \
|
| 480 |
+
"line = %r, margin = %r" % (line, margin)
|
| 481 |
+
|
| 482 |
+
if margin:
|
| 483 |
+
text = re.sub(r'(?m)^' + margin, '', text)
|
| 484 |
+
return text
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
def indent(text, prefix, predicate=None):
|
| 488 |
+
"""Adds 'prefix' to the beginning of selected lines in 'text'.
|
| 489 |
+
|
| 490 |
+
If 'predicate' is provided, 'prefix' will only be added to the lines
|
| 491 |
+
where 'predicate(line)' is True. If 'predicate' is not provided,
|
| 492 |
+
it will default to adding 'prefix' to all non-empty lines that do not
|
| 493 |
+
consist solely of whitespace characters.
|
| 494 |
+
"""
|
| 495 |
+
if predicate is None:
|
| 496 |
+
# str.splitlines(True) doesn't produce empty string.
|
| 497 |
+
# ''.splitlines(True) => []
|
| 498 |
+
# 'foo\n'.splitlines(True) => ['foo\n']
|
| 499 |
+
# So we can use just `not s.isspace()` here.
|
| 500 |
+
predicate = lambda s: not s.isspace()
|
| 501 |
+
|
| 502 |
+
prefixed_lines = []
|
| 503 |
+
for line in text.splitlines(True):
|
| 504 |
+
if predicate(line):
|
| 505 |
+
prefixed_lines.append(prefix)
|
| 506 |
+
prefixed_lines.append(line)
|
| 507 |
+
|
| 508 |
+
return ''.join(prefixed_lines)
|
local_inpainter.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
manga_integration.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
manga_settings_dialog.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
manga_translator.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ocr_manager.py
ADDED
|
@@ -0,0 +1,1904 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ocr_manager.py
|
| 2 |
+
"""
|
| 3 |
+
OCR Manager for handling multiple OCR providers
|
| 4 |
+
Handles installation, model downloading, and OCR processing
|
| 5 |
+
Updated with HuggingFace donut model and proper bubble detection integration
|
| 6 |
+
"""
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
import cv2
|
| 10 |
+
import json
|
| 11 |
+
import subprocess
|
| 12 |
+
import threading
|
| 13 |
+
import traceback
|
| 14 |
+
from typing import List, Dict, Optional, Tuple, Any
|
| 15 |
+
import numpy as np
|
| 16 |
+
from dataclasses import dataclass
|
| 17 |
+
from PIL import Image
|
| 18 |
+
import logging
|
| 19 |
+
import time
|
| 20 |
+
import random
|
| 21 |
+
import base64
|
| 22 |
+
import io
|
| 23 |
+
import requests
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
import gptqmodel
|
| 27 |
+
HAS_GPTQ = True
|
| 28 |
+
except ImportError:
|
| 29 |
+
try:
|
| 30 |
+
import auto_gptq
|
| 31 |
+
HAS_GPTQ = True
|
| 32 |
+
except ImportError:
|
| 33 |
+
HAS_GPTQ = False
|
| 34 |
+
|
| 35 |
+
try:
|
| 36 |
+
import optimum
|
| 37 |
+
HAS_OPTIMUM = True
|
| 38 |
+
except ImportError:
|
| 39 |
+
HAS_OPTIMUM = False
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
import accelerate
|
| 43 |
+
HAS_ACCELERATE = True
|
| 44 |
+
except ImportError:
|
| 45 |
+
HAS_ACCELERATE = False
|
| 46 |
+
|
| 47 |
+
logger = logging.getLogger(__name__)
|
| 48 |
+
|
| 49 |
+
@dataclass
|
| 50 |
+
class OCRResult:
|
| 51 |
+
"""Unified OCR result format with built-in sanitization to prevent data corruption."""
|
| 52 |
+
text: str
|
| 53 |
+
bbox: Tuple[int, int, int, int] # x, y, w, h
|
| 54 |
+
confidence: float
|
| 55 |
+
vertices: Optional[List[Tuple[int, int]]] = None
|
| 56 |
+
|
| 57 |
+
def __post_init__(self):
|
| 58 |
+
"""
|
| 59 |
+
This special method is called automatically after the object is created.
|
| 60 |
+
It acts as a final safeguard to ensure the 'text' attribute is ALWAYS a clean string.
|
| 61 |
+
"""
|
| 62 |
+
# --- THIS IS THE DEFINITIVE FIX ---
|
| 63 |
+
# If the text we received is a tuple, we extract the first element.
|
| 64 |
+
# This makes it impossible for a tuple to exist in a finished object.
|
| 65 |
+
if isinstance(self.text, tuple):
|
| 66 |
+
# Log that we are fixing a critical data error.
|
| 67 |
+
print(f"CRITICAL WARNING: Corrupted tuple detected in OCRResult. Sanitizing '{self.text}' to '{self.text[0]}'.")
|
| 68 |
+
self.text = self.text[0]
|
| 69 |
+
|
| 70 |
+
# Ensure the final result is always a stripped string.
|
| 71 |
+
self.text = str(self.text).strip()
|
| 72 |
+
|
| 73 |
+
class OCRProvider:
|
| 74 |
+
"""Base class for OCR providers"""
|
| 75 |
+
|
| 76 |
+
def __init__(self, log_callback=None):
|
| 77 |
+
# Set thread limits early if environment indicates single-threaded mode
|
| 78 |
+
try:
|
| 79 |
+
if os.environ.get('OMP_NUM_THREADS') == '1':
|
| 80 |
+
# Already in single-threaded mode, ensure it's applied to this process
|
| 81 |
+
try:
|
| 82 |
+
import sys
|
| 83 |
+
if 'torch' in sys.modules:
|
| 84 |
+
import torch
|
| 85 |
+
torch.set_num_threads(1)
|
| 86 |
+
except (ImportError, RuntimeError, AttributeError):
|
| 87 |
+
pass
|
| 88 |
+
try:
|
| 89 |
+
import cv2
|
| 90 |
+
cv2.setNumThreads(1)
|
| 91 |
+
except (ImportError, AttributeError):
|
| 92 |
+
pass
|
| 93 |
+
except Exception:
|
| 94 |
+
pass
|
| 95 |
+
|
| 96 |
+
self.log_callback = log_callback
|
| 97 |
+
self.is_installed = False
|
| 98 |
+
self.is_loaded = False
|
| 99 |
+
self.model = None
|
| 100 |
+
self.stop_flag = None
|
| 101 |
+
self._stopped = False
|
| 102 |
+
|
| 103 |
+
def _log(self, message: str, level: str = "info"):
|
| 104 |
+
"""Log message with stop suppression"""
|
| 105 |
+
# Suppress logs when stopped (allow only essential stop confirmation messages)
|
| 106 |
+
if self._check_stop():
|
| 107 |
+
essential_stop_keywords = [
|
| 108 |
+
"⏹️ Translation stopped by user",
|
| 109 |
+
"⏹️ OCR processing stopped",
|
| 110 |
+
"cleanup", "🧹"
|
| 111 |
+
]
|
| 112 |
+
if not any(keyword in message for keyword in essential_stop_keywords):
|
| 113 |
+
return
|
| 114 |
+
|
| 115 |
+
if self.log_callback:
|
| 116 |
+
self.log_callback(message, level)
|
| 117 |
+
else:
|
| 118 |
+
print(f"[{level.upper()}] {message}")
|
| 119 |
+
|
| 120 |
+
def set_stop_flag(self, stop_flag):
|
| 121 |
+
"""Set the stop flag for checking interruptions"""
|
| 122 |
+
self.stop_flag = stop_flag
|
| 123 |
+
self._stopped = False
|
| 124 |
+
|
| 125 |
+
def _check_stop(self) -> bool:
|
| 126 |
+
"""Check if stop has been requested"""
|
| 127 |
+
if self._stopped:
|
| 128 |
+
return True
|
| 129 |
+
if self.stop_flag and self.stop_flag.is_set():
|
| 130 |
+
self._stopped = True
|
| 131 |
+
return True
|
| 132 |
+
# Check global manga translator cancellation
|
| 133 |
+
try:
|
| 134 |
+
from manga_translator import MangaTranslator
|
| 135 |
+
if MangaTranslator.is_globally_cancelled():
|
| 136 |
+
self._stopped = True
|
| 137 |
+
return True
|
| 138 |
+
except Exception:
|
| 139 |
+
pass
|
| 140 |
+
return False
|
| 141 |
+
|
| 142 |
+
def reset_stop_flags(self):
|
| 143 |
+
"""Reset stop flags when starting new processing"""
|
| 144 |
+
self._stopped = False
|
| 145 |
+
|
| 146 |
+
def check_installation(self) -> bool:
|
| 147 |
+
"""Check if provider is installed"""
|
| 148 |
+
raise NotImplementedError
|
| 149 |
+
|
| 150 |
+
def install(self, progress_callback=None) -> bool:
|
| 151 |
+
"""Install the provider"""
|
| 152 |
+
raise NotImplementedError
|
| 153 |
+
|
| 154 |
+
def load_model(self, **kwargs) -> bool:
|
| 155 |
+
"""Load the OCR model"""
|
| 156 |
+
raise NotImplementedError
|
| 157 |
+
|
| 158 |
+
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 159 |
+
"""Detect text in image"""
|
| 160 |
+
raise NotImplementedError
|
| 161 |
+
|
| 162 |
+
class CustomAPIProvider(OCRProvider):
|
| 163 |
+
"""Custom API OCR provider that uses existing GUI variables"""
|
| 164 |
+
|
| 165 |
+
def __init__(self, log_callback=None):
|
| 166 |
+
super().__init__(log_callback)
|
| 167 |
+
|
| 168 |
+
# Use EXISTING environment variables from TranslatorGUI
|
| 169 |
+
self.api_url = os.environ.get('OPENAI_CUSTOM_BASE_URL', '')
|
| 170 |
+
self.api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '')
|
| 171 |
+
self.model_name = os.environ.get('MODEL', 'gpt-4o-mini')
|
| 172 |
+
|
| 173 |
+
# OCR prompt - use system prompt or a dedicated OCR prompt variable
|
| 174 |
+
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT',
|
| 175 |
+
os.environ.get('SYSTEM_PROMPT',
|
| 176 |
+
"YOU ARE AN OCR SYSTEM. YOUR ONLY JOB IS TEXT EXTRACTION.\n\n"
|
| 177 |
+
"CRITICAL RULES:\n"
|
| 178 |
+
"1. DO NOT TRANSLATE ANYTHING\n"
|
| 179 |
+
"2. DO NOT MODIFY THE TEXT\n"
|
| 180 |
+
"3. DO NOT EXPLAIN OR COMMENT\n"
|
| 181 |
+
"4. ONLY OUTPUT THE EXACT TEXT YOU SEE\n"
|
| 182 |
+
"5. PRESERVE NATURAL TEXT FLOW - DO NOT ADD UNNECESSARY LINE BREAKS\n\n"
|
| 183 |
+
"If you see Korean text, output it in Korean.\n"
|
| 184 |
+
"If you see Japanese text, output it in Japanese.\n"
|
| 185 |
+
"If you see Chinese text, output it in Chinese.\n"
|
| 186 |
+
"If you see English text, output it in English.\n\n"
|
| 187 |
+
"IMPORTANT: Only use line breaks where they naturally occur in the original text "
|
| 188 |
+
"(e.g., between dialogue lines or paragraphs). Do not break text mid-sentence or "
|
| 189 |
+
"between every word/character.\n\n"
|
| 190 |
+
"For vertical text common in manga/comics, transcribe it as a continuous line unless "
|
| 191 |
+
"there are clear visual breaks.\n\n"
|
| 192 |
+
"NEVER translate. ONLY extract exactly what is written.\n"
|
| 193 |
+
"Output ONLY the raw text, nothing else."
|
| 194 |
+
))
|
| 195 |
+
|
| 196 |
+
# Use existing temperature and token settings
|
| 197 |
+
self.temperature = float(os.environ.get('TRANSLATION_TEMPERATURE', '0.01'))
|
| 198 |
+
# Don't hardcode to 8192 - get fresh value when actually used
|
| 199 |
+
self.max_tokens = int(os.environ.get('MAX_OUTPUT_TOKENS', '4096'))
|
| 200 |
+
|
| 201 |
+
# Image settings from existing compression variables
|
| 202 |
+
self.image_format = 'jpeg' if os.environ.get('IMAGE_COMPRESSION_FORMAT', 'auto') != 'png' else 'png'
|
| 203 |
+
self.image_quality = int(os.environ.get('JPEG_QUALITY', '100'))
|
| 204 |
+
|
| 205 |
+
# Simple defaults
|
| 206 |
+
self.api_format = 'openai' # Most custom endpoints are OpenAI-compatible
|
| 207 |
+
self.timeout = int(os.environ.get('CHUNK_TIMEOUT', '30'))
|
| 208 |
+
self.api_headers = {} # Additional custom headers
|
| 209 |
+
|
| 210 |
+
# Retry configuration for Custom API OCR calls
|
| 211 |
+
self.max_retries = int(os.environ.get('CUSTOM_OCR_MAX_RETRIES', '3'))
|
| 212 |
+
self.retry_initial_delay = float(os.environ.get('CUSTOM_OCR_RETRY_INITIAL_DELAY', '0.8'))
|
| 213 |
+
self.retry_backoff = float(os.environ.get('CUSTOM_OCR_RETRY_BACKOFF', '1.8'))
|
| 214 |
+
self.retry_jitter = float(os.environ.get('CUSTOM_OCR_RETRY_JITTER', '0.4'))
|
| 215 |
+
self.retry_on_empty = os.environ.get('CUSTOM_OCR_RETRY_ON_EMPTY', '1') == '1'
|
| 216 |
+
|
| 217 |
+
def check_installation(self) -> bool:
|
| 218 |
+
"""Always installed - uses UnifiedClient"""
|
| 219 |
+
self.is_installed = True
|
| 220 |
+
return True
|
| 221 |
+
|
| 222 |
+
def install(self, progress_callback=None) -> bool:
|
| 223 |
+
"""No installation needed for API-based provider"""
|
| 224 |
+
return self.check_installation()
|
| 225 |
+
|
| 226 |
+
def load_model(self, **kwargs) -> bool:
|
| 227 |
+
"""Initialize UnifiedClient with current settings"""
|
| 228 |
+
try:
|
| 229 |
+
from unified_api_client import UnifiedClient
|
| 230 |
+
|
| 231 |
+
# Support passing API key from GUI if available
|
| 232 |
+
if 'api_key' in kwargs:
|
| 233 |
+
api_key = kwargs['api_key']
|
| 234 |
+
else:
|
| 235 |
+
api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '')
|
| 236 |
+
|
| 237 |
+
if 'model' in kwargs:
|
| 238 |
+
model = kwargs['model']
|
| 239 |
+
else:
|
| 240 |
+
model = os.environ.get('MODEL', 'gpt-4o-mini')
|
| 241 |
+
|
| 242 |
+
if not api_key:
|
| 243 |
+
self._log("❌ No API key configured", "error")
|
| 244 |
+
return False
|
| 245 |
+
|
| 246 |
+
# Create UnifiedClient just like translations do
|
| 247 |
+
self.client = UnifiedClient(model=model, api_key=api_key)
|
| 248 |
+
|
| 249 |
+
#self._log(f"✅ Using {model} for OCR via UnifiedClient")
|
| 250 |
+
self.is_loaded = True
|
| 251 |
+
return True
|
| 252 |
+
|
| 253 |
+
except Exception as e:
|
| 254 |
+
self._log(f"❌ Failed to initialize UnifiedClient: {str(e)}", "error")
|
| 255 |
+
return False
|
| 256 |
+
|
| 257 |
+
def _test_connection(self) -> bool:
|
| 258 |
+
"""Test API connection with a simple request"""
|
| 259 |
+
try:
|
| 260 |
+
# Create a small test image
|
| 261 |
+
test_image = np.ones((100, 100, 3), dtype=np.uint8) * 255
|
| 262 |
+
cv2.putText(test_image, "TEST", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
|
| 263 |
+
|
| 264 |
+
# Encode image
|
| 265 |
+
image_base64 = self._encode_image(test_image)
|
| 266 |
+
|
| 267 |
+
# Prepare test request based on API format
|
| 268 |
+
if self.api_format == 'openai':
|
| 269 |
+
test_payload = {
|
| 270 |
+
"model": self.model_name,
|
| 271 |
+
"messages": [
|
| 272 |
+
{
|
| 273 |
+
"role": "user",
|
| 274 |
+
"content": [
|
| 275 |
+
{"type": "text", "text": "What text do you see?"},
|
| 276 |
+
{"type": "image_url", "image_url": {"url": f"data:image/{self.image_format};base64,{image_base64}"}}
|
| 277 |
+
]
|
| 278 |
+
}
|
| 279 |
+
],
|
| 280 |
+
"max_tokens": 50
|
| 281 |
+
}
|
| 282 |
+
else:
|
| 283 |
+
# For other formats, just try a basic health check
|
| 284 |
+
return True
|
| 285 |
+
|
| 286 |
+
headers = self._prepare_headers()
|
| 287 |
+
response = requests.post(
|
| 288 |
+
self.api_url,
|
| 289 |
+
headers=headers,
|
| 290 |
+
json=test_payload,
|
| 291 |
+
timeout=10
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
return response.status_code == 200
|
| 295 |
+
|
| 296 |
+
except Exception:
|
| 297 |
+
return False
|
| 298 |
+
|
| 299 |
+
def _encode_image(self, image: np.ndarray) -> str:
|
| 300 |
+
"""Encode numpy array to base64 string"""
|
| 301 |
+
# Convert BGR to RGB if needed
|
| 302 |
+
if len(image.shape) == 3 and image.shape[2] == 3:
|
| 303 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 304 |
+
else:
|
| 305 |
+
image_rgb = image
|
| 306 |
+
|
| 307 |
+
# Convert to PIL Image
|
| 308 |
+
pil_image = Image.fromarray(image_rgb)
|
| 309 |
+
|
| 310 |
+
# Save to bytes buffer
|
| 311 |
+
buffer = io.BytesIO()
|
| 312 |
+
if self.image_format.lower() == 'png':
|
| 313 |
+
pil_image.save(buffer, format='PNG')
|
| 314 |
+
else:
|
| 315 |
+
pil_image.save(buffer, format='JPEG', quality=self.image_quality)
|
| 316 |
+
|
| 317 |
+
# Encode to base64
|
| 318 |
+
buffer.seek(0)
|
| 319 |
+
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
|
| 320 |
+
|
| 321 |
+
return image_base64
|
| 322 |
+
|
| 323 |
+
def _prepare_headers(self) -> dict:
|
| 324 |
+
"""Prepare request headers"""
|
| 325 |
+
headers = {
|
| 326 |
+
"Content-Type": "application/json"
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
# Add API key if configured
|
| 330 |
+
if self.api_key:
|
| 331 |
+
if self.api_format == 'anthropic':
|
| 332 |
+
headers["x-api-key"] = self.api_key
|
| 333 |
+
else:
|
| 334 |
+
headers["Authorization"] = f"Bearer {self.api_key}"
|
| 335 |
+
|
| 336 |
+
# Add any custom headers
|
| 337 |
+
headers.update(self.api_headers)
|
| 338 |
+
|
| 339 |
+
return headers
|
| 340 |
+
|
| 341 |
+
def _prepare_request_payload(self, image_base64: str) -> dict:
|
| 342 |
+
"""Prepare request payload based on API format"""
|
| 343 |
+
if self.api_format == 'openai':
|
| 344 |
+
return {
|
| 345 |
+
"model": self.model_name,
|
| 346 |
+
"messages": [
|
| 347 |
+
{
|
| 348 |
+
"role": "user",
|
| 349 |
+
"content": [
|
| 350 |
+
{"type": "text", "text": self.ocr_prompt},
|
| 351 |
+
{
|
| 352 |
+
"type": "image_url",
|
| 353 |
+
"image_url": {
|
| 354 |
+
"url": f"data:image/{self.image_format};base64,{image_base64}"
|
| 355 |
+
}
|
| 356 |
+
}
|
| 357 |
+
]
|
| 358 |
+
}
|
| 359 |
+
],
|
| 360 |
+
"max_tokens": self.max_tokens,
|
| 361 |
+
"temperature": self.temperature
|
| 362 |
+
}
|
| 363 |
+
|
| 364 |
+
elif self.api_format == 'anthropic':
|
| 365 |
+
return {
|
| 366 |
+
"model": self.model_name,
|
| 367 |
+
"max_tokens": self.max_tokens,
|
| 368 |
+
"temperature": self.temperature,
|
| 369 |
+
"messages": [
|
| 370 |
+
{
|
| 371 |
+
"role": "user",
|
| 372 |
+
"content": [
|
| 373 |
+
{
|
| 374 |
+
"type": "text",
|
| 375 |
+
"text": self.ocr_prompt
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"type": "image",
|
| 379 |
+
"source": {
|
| 380 |
+
"type": "base64",
|
| 381 |
+
"media_type": f"image/{self.image_format}",
|
| 382 |
+
"data": image_base64
|
| 383 |
+
}
|
| 384 |
+
}
|
| 385 |
+
]
|
| 386 |
+
}
|
| 387 |
+
]
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
else:
|
| 391 |
+
# Custom format - use environment variable for template
|
| 392 |
+
template = os.environ.get('CUSTOM_OCR_REQUEST_TEMPLATE', '{}')
|
| 393 |
+
payload = json.loads(template)
|
| 394 |
+
|
| 395 |
+
# Replace placeholders
|
| 396 |
+
payload_str = json.dumps(payload)
|
| 397 |
+
payload_str = payload_str.replace('{{IMAGE_BASE64}}', image_base64)
|
| 398 |
+
payload_str = payload_str.replace('{{PROMPT}}', self.ocr_prompt)
|
| 399 |
+
payload_str = payload_str.replace('{{MODEL}}', self.model_name)
|
| 400 |
+
payload_str = payload_str.replace('{{MAX_TOKENS}}', str(self.max_tokens))
|
| 401 |
+
payload_str = payload_str.replace('{{TEMPERATURE}}', str(self.temperature))
|
| 402 |
+
|
| 403 |
+
return json.loads(payload_str)
|
| 404 |
+
|
| 405 |
+
def _extract_text_from_response(self, response_data: dict) -> str:
|
| 406 |
+
"""Extract text from API response based on format"""
|
| 407 |
+
try:
|
| 408 |
+
if self.api_format == 'openai':
|
| 409 |
+
# OpenAI format: response.choices[0].message.content
|
| 410 |
+
return response_data.get('choices', [{}])[0].get('message', {}).get('content', '')
|
| 411 |
+
|
| 412 |
+
elif self.api_format == 'anthropic':
|
| 413 |
+
# Anthropic format: response.content[0].text
|
| 414 |
+
content = response_data.get('content', [])
|
| 415 |
+
if content and isinstance(content, list):
|
| 416 |
+
return content[0].get('text', '')
|
| 417 |
+
return ''
|
| 418 |
+
|
| 419 |
+
else:
|
| 420 |
+
# Custom format - use environment variable for path
|
| 421 |
+
response_path = os.environ.get('CUSTOM_OCR_RESPONSE_PATH', 'text')
|
| 422 |
+
|
| 423 |
+
# Navigate through the response using the path
|
| 424 |
+
result = response_data
|
| 425 |
+
for key in response_path.split('.'):
|
| 426 |
+
if isinstance(result, dict):
|
| 427 |
+
result = result.get(key, '')
|
| 428 |
+
elif isinstance(result, list) and key.isdigit():
|
| 429 |
+
idx = int(key)
|
| 430 |
+
result = result[idx] if idx < len(result) else ''
|
| 431 |
+
else:
|
| 432 |
+
result = ''
|
| 433 |
+
break
|
| 434 |
+
|
| 435 |
+
return str(result)
|
| 436 |
+
|
| 437 |
+
except Exception as e:
|
| 438 |
+
self._log(f"Failed to extract text from response: {e}", "error")
|
| 439 |
+
return ''
|
| 440 |
+
|
| 441 |
+
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 442 |
+
"""Process image using UnifiedClient.send_image()"""
|
| 443 |
+
results = []
|
| 444 |
+
|
| 445 |
+
try:
|
| 446 |
+
# Get fresh max_tokens from environment - GUI will have set this
|
| 447 |
+
max_tokens = int(os.environ.get('MAX_OUTPUT_TOKENS', '4096'))
|
| 448 |
+
if not self.is_loaded:
|
| 449 |
+
if not self.load_model():
|
| 450 |
+
return results
|
| 451 |
+
|
| 452 |
+
import cv2
|
| 453 |
+
from PIL import Image
|
| 454 |
+
import base64
|
| 455 |
+
import io
|
| 456 |
+
|
| 457 |
+
# Convert numpy array to PIL Image
|
| 458 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 459 |
+
pil_image = Image.fromarray(image_rgb)
|
| 460 |
+
h, w = image.shape[:2]
|
| 461 |
+
|
| 462 |
+
# Convert PIL Image to base64 string
|
| 463 |
+
buffer = io.BytesIO()
|
| 464 |
+
|
| 465 |
+
# Use the image format from settings
|
| 466 |
+
if self.image_format.lower() == 'png':
|
| 467 |
+
pil_image.save(buffer, format='PNG')
|
| 468 |
+
else:
|
| 469 |
+
pil_image.save(buffer, format='JPEG', quality=self.image_quality)
|
| 470 |
+
|
| 471 |
+
buffer.seek(0)
|
| 472 |
+
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
|
| 473 |
+
|
| 474 |
+
# For OpenAI vision models, we need BOTH:
|
| 475 |
+
# 1. System prompt with instructions
|
| 476 |
+
# 2. User message that includes the image
|
| 477 |
+
messages = [
|
| 478 |
+
{
|
| 479 |
+
"role": "system",
|
| 480 |
+
"content": self.ocr_prompt # The OCR instruction as system prompt
|
| 481 |
+
},
|
| 482 |
+
{
|
| 483 |
+
"role": "user",
|
| 484 |
+
"content": [
|
| 485 |
+
{
|
| 486 |
+
"type": "text",
|
| 487 |
+
"text": "Image:" # Minimal text, just to have something
|
| 488 |
+
},
|
| 489 |
+
{
|
| 490 |
+
"type": "image_url",
|
| 491 |
+
"image_url": {
|
| 492 |
+
"url": f"data:image/jpeg;base64,{image_base64}"
|
| 493 |
+
}
|
| 494 |
+
}
|
| 495 |
+
]
|
| 496 |
+
}
|
| 497 |
+
]
|
| 498 |
+
|
| 499 |
+
# Now send this properly formatted message
|
| 500 |
+
# The UnifiedClient should handle this correctly
|
| 501 |
+
# But we're NOT using send_image, we're using regular send
|
| 502 |
+
|
| 503 |
+
# Retry-aware call
|
| 504 |
+
from unified_api_client import UnifiedClientError # local import to avoid hard dependency at module import time
|
| 505 |
+
max_attempts = max(1, self.max_retries)
|
| 506 |
+
attempt = 0
|
| 507 |
+
last_error = None
|
| 508 |
+
|
| 509 |
+
# Common refusal/error phrases that indicate a non-OCR response
|
| 510 |
+
refusal_phrases = [
|
| 511 |
+
"I can't extract", "I cannot extract",
|
| 512 |
+
"I'm sorry", "I am sorry",
|
| 513 |
+
"I'm unable", "I am unable",
|
| 514 |
+
"cannot process images",
|
| 515 |
+
"I can't help with that",
|
| 516 |
+
"cannot view images",
|
| 517 |
+
"no text in the image"
|
| 518 |
+
]
|
| 519 |
+
|
| 520 |
+
while attempt < max_attempts:
|
| 521 |
+
# Check for stop before each attempt
|
| 522 |
+
if self._check_stop():
|
| 523 |
+
self._log("⏹️ OCR processing stopped by user", "warning")
|
| 524 |
+
return results
|
| 525 |
+
|
| 526 |
+
try:
|
| 527 |
+
response = self.client.send(
|
| 528 |
+
messages=messages,
|
| 529 |
+
temperature=self.temperature,
|
| 530 |
+
max_tokens=max_tokens
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
# Extract content from response object
|
| 534 |
+
content, finish_reason = response
|
| 535 |
+
|
| 536 |
+
# Validate content
|
| 537 |
+
has_content = bool(content and str(content).strip())
|
| 538 |
+
refused = False
|
| 539 |
+
if has_content:
|
| 540 |
+
# Filter out explicit failure markers
|
| 541 |
+
if "[" in content and "FAILED]" in content:
|
| 542 |
+
refused = True
|
| 543 |
+
elif any(phrase.lower() in content.lower() for phrase in refusal_phrases):
|
| 544 |
+
refused = True
|
| 545 |
+
|
| 546 |
+
# Decide success or retry
|
| 547 |
+
if has_content and not refused:
|
| 548 |
+
text = str(content).strip()
|
| 549 |
+
results.append(OCRResult(
|
| 550 |
+
text=text,
|
| 551 |
+
bbox=(0, 0, w, h),
|
| 552 |
+
confidence=kwargs.get('confidence', 0.85),
|
| 553 |
+
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
|
| 554 |
+
))
|
| 555 |
+
self._log(f"✅ Detected: {text[:50]}...")
|
| 556 |
+
break # success
|
| 557 |
+
else:
|
| 558 |
+
reason = "empty result" if not has_content else "refusal/non-OCR response"
|
| 559 |
+
last_error = f"{reason} (finish_reason: {finish_reason})"
|
| 560 |
+
# Check if we should retry on empty or refusal
|
| 561 |
+
should_retry = (not has_content and self.retry_on_empty) or refused
|
| 562 |
+
attempt += 1
|
| 563 |
+
if attempt >= max_attempts or not should_retry:
|
| 564 |
+
# No more retries or shouldn't retry
|
| 565 |
+
if not has_content:
|
| 566 |
+
self._log(f"⚠️ No text detected (finish_reason: {finish_reason})")
|
| 567 |
+
else:
|
| 568 |
+
self._log(f"❌ Model returned non-OCR response: {str(content)[:120]}", "warning")
|
| 569 |
+
break
|
| 570 |
+
# Backoff before retrying
|
| 571 |
+
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
|
| 572 |
+
self._log(f"🔄 Retry {attempt}/{max_attempts - 1} after {delay:.1f}s due to {reason}...", "warning")
|
| 573 |
+
time.sleep(delay)
|
| 574 |
+
time.sleep(0.1) # Brief pause for stability
|
| 575 |
+
self._log("💤 OCR retry pausing briefly for stability", "debug")
|
| 576 |
+
continue
|
| 577 |
+
|
| 578 |
+
except UnifiedClientError as ue:
|
| 579 |
+
msg = str(ue)
|
| 580 |
+
last_error = msg
|
| 581 |
+
# Do not retry on explicit user cancellation
|
| 582 |
+
if 'cancelled' in msg.lower() or 'stopped by user' in msg.lower():
|
| 583 |
+
self._log(f"❌ OCR cancelled: {msg}", "error")
|
| 584 |
+
break
|
| 585 |
+
attempt += 1
|
| 586 |
+
if attempt >= max_attempts:
|
| 587 |
+
self._log(f"❌ OCR failed after {attempt} attempts: {msg}", "error")
|
| 588 |
+
break
|
| 589 |
+
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
|
| 590 |
+
self._log(f"🔄 API error, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {msg}", "warning")
|
| 591 |
+
time.sleep(delay)
|
| 592 |
+
time.sleep(0.1) # Brief pause for stability
|
| 593 |
+
self._log("💤 OCR API error retry pausing briefly for stability", "debug")
|
| 594 |
+
continue
|
| 595 |
+
except Exception as e_inner:
|
| 596 |
+
last_error = str(e_inner)
|
| 597 |
+
attempt += 1
|
| 598 |
+
if attempt >= max_attempts:
|
| 599 |
+
self._log(f"❌ OCR exception after {attempt} attempts: {last_error}", "error")
|
| 600 |
+
break
|
| 601 |
+
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
|
| 602 |
+
self._log(f"🔄 Exception, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {last_error}", "warning")
|
| 603 |
+
time.sleep(delay)
|
| 604 |
+
time.sleep(0.1) # Brief pause for stability
|
| 605 |
+
self._log("💤 OCR exception retry pausing briefly for stability", "debug")
|
| 606 |
+
continue
|
| 607 |
+
|
| 608 |
+
except Exception as e:
|
| 609 |
+
self._log(f"❌ Error: {str(e)}", "error")
|
| 610 |
+
import traceback
|
| 611 |
+
self._log(traceback.format_exc(), "debug")
|
| 612 |
+
|
| 613 |
+
return results
|
| 614 |
+
|
| 615 |
+
class MangaOCRProvider(OCRProvider):
|
| 616 |
+
"""Manga OCR provider using HuggingFace model directly"""
|
| 617 |
+
|
| 618 |
+
def __init__(self, log_callback=None):
|
| 619 |
+
super().__init__(log_callback)
|
| 620 |
+
self.processor = None
|
| 621 |
+
self.model = None
|
| 622 |
+
self.tokenizer = None
|
| 623 |
+
|
| 624 |
+
def check_installation(self) -> bool:
|
| 625 |
+
"""Check if transformers is installed"""
|
| 626 |
+
try:
|
| 627 |
+
import transformers
|
| 628 |
+
import torch
|
| 629 |
+
self.is_installed = True
|
| 630 |
+
return True
|
| 631 |
+
except ImportError:
|
| 632 |
+
return False
|
| 633 |
+
|
| 634 |
+
def install(self, progress_callback=None) -> bool:
|
| 635 |
+
"""Install transformers and torch"""
|
| 636 |
+
pass
|
| 637 |
+
|
| 638 |
+
def _is_valid_local_model_dir(self, path: str) -> bool:
|
| 639 |
+
"""Check that a local HF model directory has required files."""
|
| 640 |
+
try:
|
| 641 |
+
if not path or not os.path.isdir(path):
|
| 642 |
+
return False
|
| 643 |
+
needed_any_weights = any(
|
| 644 |
+
os.path.exists(os.path.join(path, name)) for name in (
|
| 645 |
+
'pytorch_model.bin',
|
| 646 |
+
'model.safetensors'
|
| 647 |
+
)
|
| 648 |
+
)
|
| 649 |
+
has_config = os.path.exists(os.path.join(path, 'config.json'))
|
| 650 |
+
has_processor = (
|
| 651 |
+
os.path.exists(os.path.join(path, 'preprocessor_config.json')) or
|
| 652 |
+
os.path.exists(os.path.join(path, 'processor_config.json'))
|
| 653 |
+
)
|
| 654 |
+
has_tokenizer = (
|
| 655 |
+
os.path.exists(os.path.join(path, 'tokenizer.json')) or
|
| 656 |
+
os.path.exists(os.path.join(path, 'tokenizer_config.json'))
|
| 657 |
+
)
|
| 658 |
+
return has_config and needed_any_weights and has_processor and has_tokenizer
|
| 659 |
+
except Exception:
|
| 660 |
+
return False
|
| 661 |
+
|
| 662 |
+
def load_model(self, **kwargs) -> bool:
|
| 663 |
+
"""Load the manga-ocr model, preferring a local directory to avoid re-downloading"""
|
| 664 |
+
print("\n>>> MangaOCRProvider.load_model() called")
|
| 665 |
+
try:
|
| 666 |
+
if not self.is_installed and not self.check_installation():
|
| 667 |
+
print("ERROR: Transformers not installed")
|
| 668 |
+
self._log("❌ Transformers not installed", "error")
|
| 669 |
+
return False
|
| 670 |
+
|
| 671 |
+
# Always disable progress bars to avoid tqdm issues in some environments
|
| 672 |
+
import os
|
| 673 |
+
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
|
| 674 |
+
|
| 675 |
+
from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoImageProcessor
|
| 676 |
+
import torch
|
| 677 |
+
|
| 678 |
+
# Prefer a local model directory if present to avoid any Hub access
|
| 679 |
+
candidates = []
|
| 680 |
+
env_local = os.environ.get("MANGA_OCR_LOCAL_DIR")
|
| 681 |
+
if env_local:
|
| 682 |
+
candidates.append(env_local)
|
| 683 |
+
|
| 684 |
+
# Project root one level up from this file
|
| 685 |
+
root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
|
| 686 |
+
candidates.append(os.path.join(root_dir, 'models', 'manga-ocr-base'))
|
| 687 |
+
candidates.append(os.path.join(root_dir, 'models', 'kha-white', 'manga-ocr-base'))
|
| 688 |
+
|
| 689 |
+
model_source = None
|
| 690 |
+
local_only = False
|
| 691 |
+
# Find a valid local dir
|
| 692 |
+
for cand in candidates:
|
| 693 |
+
if self._is_valid_local_model_dir(cand):
|
| 694 |
+
model_source = cand
|
| 695 |
+
local_only = True
|
| 696 |
+
break
|
| 697 |
+
|
| 698 |
+
# If no valid local dir, use Hub
|
| 699 |
+
if not model_source:
|
| 700 |
+
model_source = "kha-white/manga-ocr-base"
|
| 701 |
+
# Make sure we are not forcing offline mode
|
| 702 |
+
if os.environ.get("HF_HUB_OFFLINE") == "1":
|
| 703 |
+
try:
|
| 704 |
+
del os.environ["HF_HUB_OFFLINE"]
|
| 705 |
+
except Exception:
|
| 706 |
+
pass
|
| 707 |
+
self._log("🔥 Loading manga-ocr model from Hugging Face Hub")
|
| 708 |
+
self._log(f" Repo: {model_source}")
|
| 709 |
+
else:
|
| 710 |
+
# Only set offline when local dir is fully valid
|
| 711 |
+
os.environ.setdefault("HF_HUB_OFFLINE", "1")
|
| 712 |
+
self._log("🔥 Loading manga-ocr model from local directory")
|
| 713 |
+
self._log(f" Local path: {model_source}")
|
| 714 |
+
|
| 715 |
+
# Decide target device once; we will move after full CPU load to avoid meta tensors
|
| 716 |
+
use_cuda = torch.cuda.is_available()
|
| 717 |
+
|
| 718 |
+
# Try loading components, falling back to Hub if local-only fails
|
| 719 |
+
def _load_components(source: str, local_flag: bool):
|
| 720 |
+
self._log(" Loading tokenizer...")
|
| 721 |
+
tok = AutoTokenizer.from_pretrained(source, local_files_only=local_flag)
|
| 722 |
+
|
| 723 |
+
self._log(" Loading image processor...")
|
| 724 |
+
try:
|
| 725 |
+
from transformers import AutoProcessor
|
| 726 |
+
except Exception:
|
| 727 |
+
AutoProcessor = None
|
| 728 |
+
try:
|
| 729 |
+
proc = AutoImageProcessor.from_pretrained(source, local_files_only=local_flag)
|
| 730 |
+
except Exception as e_proc:
|
| 731 |
+
if AutoProcessor is not None:
|
| 732 |
+
self._log(f" ⚠️ AutoImageProcessor failed: {e_proc}. Trying AutoProcessor...", "warning")
|
| 733 |
+
proc = AutoProcessor.from_pretrained(source, local_files_only=local_flag)
|
| 734 |
+
else:
|
| 735 |
+
raise
|
| 736 |
+
|
| 737 |
+
self._log(" Loading model...")
|
| 738 |
+
# Prevent meta tensors by forcing full materialization on CPU at load time
|
| 739 |
+
os.environ.setdefault('TORCHDYNAMO_DISABLE', '1')
|
| 740 |
+
mdl = VisionEncoderDecoderModel.from_pretrained(
|
| 741 |
+
source,
|
| 742 |
+
local_files_only=local_flag,
|
| 743 |
+
low_cpu_mem_usage=False,
|
| 744 |
+
device_map=None,
|
| 745 |
+
torch_dtype=torch.float32 # Use torch_dtype instead of dtype
|
| 746 |
+
)
|
| 747 |
+
return tok, proc, mdl
|
| 748 |
+
|
| 749 |
+
try:
|
| 750 |
+
self.tokenizer, self.processor, self.model = _load_components(model_source, local_only)
|
| 751 |
+
except Exception as e_local:
|
| 752 |
+
if local_only:
|
| 753 |
+
# Fallback to Hub once if local fails
|
| 754 |
+
self._log(f" ⚠️ Local model load failed: {e_local}", "warning")
|
| 755 |
+
try:
|
| 756 |
+
if os.environ.get("HF_HUB_OFFLINE") == "1":
|
| 757 |
+
del os.environ["HF_HUB_OFFLINE"]
|
| 758 |
+
except Exception:
|
| 759 |
+
pass
|
| 760 |
+
model_source = "kha-white/manga-ocr-base"
|
| 761 |
+
local_only = False
|
| 762 |
+
self._log(" Retrying from Hugging Face Hub...")
|
| 763 |
+
self.tokenizer, self.processor, self.model = _load_components(model_source, local_only)
|
| 764 |
+
else:
|
| 765 |
+
raise
|
| 766 |
+
|
| 767 |
+
# Move to CUDA only after full CPU materialization
|
| 768 |
+
target_device = 'cpu'
|
| 769 |
+
if use_cuda:
|
| 770 |
+
try:
|
| 771 |
+
self.model = self.model.to('cuda')
|
| 772 |
+
target_device = 'cuda'
|
| 773 |
+
except Exception as move_err:
|
| 774 |
+
self._log(f" ⚠️ Could not move model to CUDA: {move_err}", "warning")
|
| 775 |
+
target_device = 'cpu'
|
| 776 |
+
|
| 777 |
+
# Finalize eval mode
|
| 778 |
+
self.model.eval()
|
| 779 |
+
|
| 780 |
+
# Sanity-check: ensure no parameter remains on 'meta' device
|
| 781 |
+
try:
|
| 782 |
+
for n, p in self.model.named_parameters():
|
| 783 |
+
dev = getattr(p, 'device', None)
|
| 784 |
+
if dev is not None and getattr(dev, 'type', '') == 'meta':
|
| 785 |
+
raise RuntimeError(f"Parameter {n} is on 'meta' after load")
|
| 786 |
+
except Exception as sanity_err:
|
| 787 |
+
self._log(f"❌ Manga-OCR model load sanity check failed: {sanity_err}", "error")
|
| 788 |
+
return False
|
| 789 |
+
|
| 790 |
+
print(f"SUCCESS: Model loaded on {target_device.upper()}")
|
| 791 |
+
self._log(f" ✅ Model loaded on {target_device.upper()}")
|
| 792 |
+
self.is_loaded = True
|
| 793 |
+
self._log("✅ Manga OCR model ready")
|
| 794 |
+
print(">>> Returning True from load_model()")
|
| 795 |
+
return True
|
| 796 |
+
|
| 797 |
+
except Exception as e:
|
| 798 |
+
print(f"\nEXCEPTION in load_model: {e}")
|
| 799 |
+
import traceback
|
| 800 |
+
print(traceback.format_exc())
|
| 801 |
+
self._log(f"❌ Failed to load manga-ocr model: {str(e)}", "error")
|
| 802 |
+
self._log(traceback.format_exc(), "error")
|
| 803 |
+
try:
|
| 804 |
+
if 'local_only' in locals() and local_only:
|
| 805 |
+
self._log("Hint: Local load failed. Ensure your models/manga-ocr-base contains required files (config.json, preprocessor_config.json, tokenizer.json or tokenizer_config.json, and model weights).", "warning")
|
| 806 |
+
except Exception:
|
| 807 |
+
pass
|
| 808 |
+
return False
|
| 809 |
+
|
| 810 |
+
def _run_ocr(self, pil_image):
|
| 811 |
+
"""Run OCR on a PIL image using the HuggingFace model"""
|
| 812 |
+
import torch
|
| 813 |
+
|
| 814 |
+
# Process image (keyword arg for broader compatibility across transformers versions)
|
| 815 |
+
inputs = self.processor(images=pil_image, return_tensors="pt")
|
| 816 |
+
pixel_values = inputs["pixel_values"]
|
| 817 |
+
|
| 818 |
+
# Move to same device as model
|
| 819 |
+
try:
|
| 820 |
+
model_device = next(self.model.parameters()).device
|
| 821 |
+
except StopIteration:
|
| 822 |
+
model_device = torch.device('cpu')
|
| 823 |
+
pixel_values = pixel_values.to(model_device)
|
| 824 |
+
|
| 825 |
+
# Generate text
|
| 826 |
+
with torch.no_grad():
|
| 827 |
+
generated_ids = self.model.generate(pixel_values)
|
| 828 |
+
|
| 829 |
+
# Decode
|
| 830 |
+
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 831 |
+
|
| 832 |
+
return generated_text
|
| 833 |
+
|
| 834 |
+
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 835 |
+
"""
|
| 836 |
+
Process the image region passed to it.
|
| 837 |
+
This could be a bubble region or the full image.
|
| 838 |
+
"""
|
| 839 |
+
results = []
|
| 840 |
+
|
| 841 |
+
# Check for stop at start
|
| 842 |
+
if self._check_stop():
|
| 843 |
+
self._log("⏹️ Manga-OCR processing stopped by user", "warning")
|
| 844 |
+
return results
|
| 845 |
+
|
| 846 |
+
try:
|
| 847 |
+
if not self.is_loaded:
|
| 848 |
+
if not self.load_model():
|
| 849 |
+
return results
|
| 850 |
+
|
| 851 |
+
import cv2
|
| 852 |
+
from PIL import Image
|
| 853 |
+
|
| 854 |
+
# Get confidence from kwargs
|
| 855 |
+
confidence = kwargs.get('confidence', 0.7)
|
| 856 |
+
|
| 857 |
+
# Convert numpy array to PIL
|
| 858 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 859 |
+
pil_image = Image.fromarray(image_rgb)
|
| 860 |
+
h, w = image.shape[:2]
|
| 861 |
+
|
| 862 |
+
self._log("🔍 Processing region with manga-ocr...")
|
| 863 |
+
|
| 864 |
+
# Check for stop before inference
|
| 865 |
+
if self._check_stop():
|
| 866 |
+
self._log("⏹️ Manga-OCR inference stopped by user", "warning")
|
| 867 |
+
return results
|
| 868 |
+
|
| 869 |
+
# Run OCR on the image region
|
| 870 |
+
text = self._run_ocr(pil_image)
|
| 871 |
+
|
| 872 |
+
if text and text.strip():
|
| 873 |
+
# Return result for this region with its actual bbox
|
| 874 |
+
results.append(OCRResult(
|
| 875 |
+
text=text.strip(),
|
| 876 |
+
bbox=(0, 0, w, h), # Relative to the region passed in
|
| 877 |
+
confidence=confidence,
|
| 878 |
+
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
|
| 879 |
+
))
|
| 880 |
+
self._log(f"✅ Detected text: {text[:50]}...")
|
| 881 |
+
|
| 882 |
+
except Exception as e:
|
| 883 |
+
self._log(f"❌ Error in manga-ocr: {str(e)}", "error")
|
| 884 |
+
|
| 885 |
+
return results
|
| 886 |
+
|
| 887 |
+
class Qwen2VL(OCRProvider):
|
| 888 |
+
"""OCR using Qwen2-VL - Vision Language Model that can read Korean text"""
|
| 889 |
+
|
| 890 |
+
def __init__(self, log_callback=None):
|
| 891 |
+
super().__init__(log_callback)
|
| 892 |
+
self.processor = None
|
| 893 |
+
self.model = None
|
| 894 |
+
self.tokenizer = None
|
| 895 |
+
|
| 896 |
+
# Get OCR prompt from environment or use default
|
| 897 |
+
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT',
|
| 898 |
+
"YOU ARE AN OCR SYSTEM. YOUR ONLY JOB IS TEXT EXTRACTION.\n\n"
|
| 899 |
+
"CRITICAL RULES:\n"
|
| 900 |
+
"1. DO NOT TRANSLATE ANYTHING\n"
|
| 901 |
+
"2. DO NOT MODIFY THE TEXT\n"
|
| 902 |
+
"3. DO NOT EXPLAIN OR COMMENT\n"
|
| 903 |
+
"4. ONLY OUTPUT THE EXACT TEXT YOU SEE\n"
|
| 904 |
+
"5. PRESERVE NATURAL TEXT FLOW - DO NOT ADD UNNECESSARY LINE BREAKS\n\n"
|
| 905 |
+
"If you see Korean text, output it in Korean.\n"
|
| 906 |
+
"If you see Japanese text, output it in Japanese.\n"
|
| 907 |
+
"If you see Chinese text, output it in Chinese.\n"
|
| 908 |
+
"If you see English text, output it in English.\n\n"
|
| 909 |
+
"IMPORTANT: Only use line breaks where they naturally occur in the original text "
|
| 910 |
+
"(e.g., between dialogue lines or paragraphs). Do not break text mid-sentence or "
|
| 911 |
+
"between every word/character.\n\n"
|
| 912 |
+
"For vertical text common in manga/comics, transcribe it as a continuous line unless "
|
| 913 |
+
"there are clear visual breaks.\n\n"
|
| 914 |
+
"NEVER translate. ONLY extract exactly what is written.\n"
|
| 915 |
+
"Output ONLY the raw text, nothing else."
|
| 916 |
+
)
|
| 917 |
+
|
| 918 |
+
def set_ocr_prompt(self, prompt: str):
|
| 919 |
+
"""Allow setting the OCR prompt dynamically"""
|
| 920 |
+
self.ocr_prompt = prompt
|
| 921 |
+
|
| 922 |
+
def check_installation(self) -> bool:
|
| 923 |
+
"""Check if required packages are installed"""
|
| 924 |
+
try:
|
| 925 |
+
import transformers
|
| 926 |
+
import torch
|
| 927 |
+
self.is_installed = True
|
| 928 |
+
return True
|
| 929 |
+
except ImportError:
|
| 930 |
+
return False
|
| 931 |
+
|
| 932 |
+
def install(self, progress_callback=None) -> bool:
|
| 933 |
+
"""Install requirements for Qwen2-VL"""
|
| 934 |
+
pass
|
| 935 |
+
|
| 936 |
+
def load_model(self, model_size=None, **kwargs) -> bool:
|
| 937 |
+
"""Load Qwen2-VL model with size selection"""
|
| 938 |
+
self._log(f"DEBUG: load_model called with model_size={model_size}")
|
| 939 |
+
|
| 940 |
+
try:
|
| 941 |
+
if not self.is_installed and not self.check_installation():
|
| 942 |
+
self._log("❌ Not installed", "error")
|
| 943 |
+
return False
|
| 944 |
+
|
| 945 |
+
self._log("🔥 Loading Qwen2-VL for Advanced OCR...")
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
|
| 949 |
+
from transformers import AutoProcessor, AutoTokenizer
|
| 950 |
+
import torch
|
| 951 |
+
|
| 952 |
+
# Model options
|
| 953 |
+
model_options = {
|
| 954 |
+
"1": "Qwen/Qwen2-VL-2B-Instruct",
|
| 955 |
+
"2": "Qwen/Qwen2-VL-7B-Instruct",
|
| 956 |
+
"3": "Qwen/Qwen2-VL-72B-Instruct",
|
| 957 |
+
"4": "custom"
|
| 958 |
+
}
|
| 959 |
+
# CHANGE: Default to 7B instead of 2B
|
| 960 |
+
# Check for saved preference first
|
| 961 |
+
if model_size is None:
|
| 962 |
+
# Try to get from environment or config
|
| 963 |
+
import os
|
| 964 |
+
model_size = os.environ.get('QWEN2VL_MODEL_SIZE', '1')
|
| 965 |
+
|
| 966 |
+
# Determine which model to load
|
| 967 |
+
if model_size and str(model_size).startswith("custom:"):
|
| 968 |
+
# Custom model passed with ID
|
| 969 |
+
model_id = str(model_size).replace("custom:", "")
|
| 970 |
+
self.loaded_model_size = "Custom"
|
| 971 |
+
self.model_id = model_id
|
| 972 |
+
self._log(f"Loading custom model: {model_id}")
|
| 973 |
+
elif model_size == "4":
|
| 974 |
+
# Custom option selected but no ID - shouldn't happen
|
| 975 |
+
self._log("❌ Custom model selected but no ID provided", "error")
|
| 976 |
+
return False
|
| 977 |
+
elif model_size and str(model_size) in model_options:
|
| 978 |
+
# Standard model option
|
| 979 |
+
option = model_options[str(model_size)]
|
| 980 |
+
if option == "custom":
|
| 981 |
+
self._log("❌ Custom model needs an ID", "error")
|
| 982 |
+
return False
|
| 983 |
+
model_id = option
|
| 984 |
+
# Set loaded_model_size for status display
|
| 985 |
+
if model_size == "1":
|
| 986 |
+
self.loaded_model_size = "2B"
|
| 987 |
+
elif model_size == "2":
|
| 988 |
+
self.loaded_model_size = "7B"
|
| 989 |
+
elif model_size == "3":
|
| 990 |
+
self.loaded_model_size = "72B"
|
| 991 |
+
else:
|
| 992 |
+
# CHANGE: Default to 7B (option "2") instead of 2B
|
| 993 |
+
model_id = model_options["1"] # Changed from "1" to "2"
|
| 994 |
+
self.loaded_model_size = "2B" # Changed from "2B" to "7B"
|
| 995 |
+
self._log("No model size specified, defaulting to 2B") # Changed message
|
| 996 |
+
|
| 997 |
+
self._log(f"Loading model: {model_id}")
|
| 998 |
+
|
| 999 |
+
# Load processor and tokenizer
|
| 1000 |
+
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 1001 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 1002 |
+
|
| 1003 |
+
# Load the model - let it figure out the class dynamically
|
| 1004 |
+
if torch.cuda.is_available():
|
| 1005 |
+
self._log(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 1006 |
+
# Use auto model class
|
| 1007 |
+
from transformers import AutoModelForVision2Seq
|
| 1008 |
+
self.model = AutoModelForVision2Seq.from_pretrained(
|
| 1009 |
+
model_id,
|
| 1010 |
+
dtype=torch.float16,
|
| 1011 |
+
device_map="auto",
|
| 1012 |
+
trust_remote_code=True
|
| 1013 |
+
)
|
| 1014 |
+
self._log("✅ Model loaded on GPU")
|
| 1015 |
+
else:
|
| 1016 |
+
self._log("Loading on CPU...")
|
| 1017 |
+
from transformers import AutoModelForVision2Seq
|
| 1018 |
+
self.model = AutoModelForVision2Seq.from_pretrained(
|
| 1019 |
+
model_id,
|
| 1020 |
+
dtype=torch.float32,
|
| 1021 |
+
trust_remote_code=True
|
| 1022 |
+
)
|
| 1023 |
+
self._log("✅ Model loaded on CPU")
|
| 1024 |
+
|
| 1025 |
+
self.model.eval()
|
| 1026 |
+
self.is_loaded = True
|
| 1027 |
+
self._log("✅ Qwen2-VL ready for Advanced OCR!")
|
| 1028 |
+
return True
|
| 1029 |
+
|
| 1030 |
+
except Exception as e:
|
| 1031 |
+
self._log(f"❌ Failed to load: {str(e)}", "error")
|
| 1032 |
+
import traceback
|
| 1033 |
+
self._log(traceback.format_exc(), "debug")
|
| 1034 |
+
return False
|
| 1035 |
+
|
| 1036 |
+
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1037 |
+
"""Process image with Qwen2-VL for Korean text extraction"""
|
| 1038 |
+
results = []
|
| 1039 |
+
if hasattr(self, 'model_id'):
|
| 1040 |
+
self._log(f"DEBUG: Using model: {self.model_id}", "debug")
|
| 1041 |
+
|
| 1042 |
+
# Check if OCR prompt was passed in kwargs (for dynamic updates)
|
| 1043 |
+
if 'ocr_prompt' in kwargs:
|
| 1044 |
+
self.ocr_prompt = kwargs['ocr_prompt']
|
| 1045 |
+
|
| 1046 |
+
try:
|
| 1047 |
+
if not self.is_loaded:
|
| 1048 |
+
if not self.load_model():
|
| 1049 |
+
return results
|
| 1050 |
+
|
| 1051 |
+
import cv2
|
| 1052 |
+
from PIL import Image
|
| 1053 |
+
import torch
|
| 1054 |
+
|
| 1055 |
+
# Convert to PIL
|
| 1056 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 1057 |
+
pil_image = Image.fromarray(image_rgb)
|
| 1058 |
+
h, w = image.shape[:2]
|
| 1059 |
+
|
| 1060 |
+
self._log(f"🔍 Processing with Qwen2-VL ({w}x{h} pixels)...")
|
| 1061 |
+
|
| 1062 |
+
# Use the configurable OCR prompt
|
| 1063 |
+
messages = [
|
| 1064 |
+
{
|
| 1065 |
+
"role": "user",
|
| 1066 |
+
"content": [
|
| 1067 |
+
{
|
| 1068 |
+
"type": "image",
|
| 1069 |
+
"image": pil_image,
|
| 1070 |
+
},
|
| 1071 |
+
{
|
| 1072 |
+
"type": "text",
|
| 1073 |
+
"text": self.ocr_prompt # Use the configurable prompt
|
| 1074 |
+
}
|
| 1075 |
+
]
|
| 1076 |
+
}
|
| 1077 |
+
]
|
| 1078 |
+
|
| 1079 |
+
# Alternative simpler prompt if the above still causes issues:
|
| 1080 |
+
# "text": "OCR: Extract text as-is"
|
| 1081 |
+
|
| 1082 |
+
# Process with Qwen2-VL
|
| 1083 |
+
text = self.processor.apply_chat_template(
|
| 1084 |
+
messages,
|
| 1085 |
+
tokenize=False,
|
| 1086 |
+
add_generation_prompt=True
|
| 1087 |
+
)
|
| 1088 |
+
|
| 1089 |
+
inputs = self.processor(
|
| 1090 |
+
text=[text],
|
| 1091 |
+
images=[pil_image],
|
| 1092 |
+
padding=True,
|
| 1093 |
+
return_tensors="pt"
|
| 1094 |
+
)
|
| 1095 |
+
|
| 1096 |
+
# Get the device and dtype the model is currently on
|
| 1097 |
+
model_device = next(self.model.parameters()).device
|
| 1098 |
+
model_dtype = next(self.model.parameters()).dtype
|
| 1099 |
+
|
| 1100 |
+
# Move inputs to the same device as the model and cast float tensors to model dtype
|
| 1101 |
+
try:
|
| 1102 |
+
# Move first
|
| 1103 |
+
inputs = inputs.to(model_device)
|
| 1104 |
+
# Then align dtypes only for floating tensors (e.g., pixel_values)
|
| 1105 |
+
for k, v in inputs.items():
|
| 1106 |
+
if isinstance(v, torch.Tensor) and torch.is_floating_point(v):
|
| 1107 |
+
inputs[k] = v.to(model_dtype)
|
| 1108 |
+
except Exception:
|
| 1109 |
+
# Fallback: ensure at least pixel_values is correct if present
|
| 1110 |
+
try:
|
| 1111 |
+
if isinstance(inputs, dict) and "pixel_values" in inputs:
|
| 1112 |
+
pv = inputs["pixel_values"].to(model_device)
|
| 1113 |
+
if torch.is_floating_point(pv):
|
| 1114 |
+
inputs["pixel_values"] = pv.to(model_dtype)
|
| 1115 |
+
except Exception:
|
| 1116 |
+
pass
|
| 1117 |
+
|
| 1118 |
+
# Ensure pixel_values explicitly matches model dtype if present
|
| 1119 |
+
try:
|
| 1120 |
+
if isinstance(inputs, dict) and "pixel_values" in inputs:
|
| 1121 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(device=model_device, dtype=model_dtype)
|
| 1122 |
+
except Exception:
|
| 1123 |
+
pass
|
| 1124 |
+
|
| 1125 |
+
# Generate text with stricter parameters to avoid creative responses
|
| 1126 |
+
use_amp = (hasattr(torch, 'cuda') and model_device.type == 'cuda' and model_dtype in (torch.float16, torch.bfloat16))
|
| 1127 |
+
autocast_dev = 'cuda' if model_device.type == 'cuda' else 'cpu'
|
| 1128 |
+
autocast_dtype = model_dtype if model_dtype in (torch.float16, torch.bfloat16) else None
|
| 1129 |
+
|
| 1130 |
+
with torch.no_grad():
|
| 1131 |
+
if use_amp and autocast_dtype is not None:
|
| 1132 |
+
with torch.autocast(autocast_dev, dtype=autocast_dtype):
|
| 1133 |
+
generated_ids = self.model.generate(
|
| 1134 |
+
**inputs,
|
| 1135 |
+
max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short
|
| 1136 |
+
do_sample=False, # Keep deterministic
|
| 1137 |
+
temperature=0.01, # Keep your very low temperature
|
| 1138 |
+
top_p=1.0, # Keep no nucleus sampling
|
| 1139 |
+
repetition_penalty=1.0, # Keep no repetition penalty
|
| 1140 |
+
num_beams=1, # Ensure greedy decoding (faster than beam search)
|
| 1141 |
+
use_cache=True, # Enable KV cache for speed
|
| 1142 |
+
early_stopping=True, # Stop at EOS token
|
| 1143 |
+
pad_token_id=self.tokenizer.pad_token_id, # Proper padding
|
| 1144 |
+
eos_token_id=self.tokenizer.eos_token_id, # Proper stopping
|
| 1145 |
+
)
|
| 1146 |
+
else:
|
| 1147 |
+
generated_ids = self.model.generate(
|
| 1148 |
+
**inputs,
|
| 1149 |
+
max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short
|
| 1150 |
+
do_sample=False, # Keep deterministic
|
| 1151 |
+
temperature=0.01, # Keep your very low temperature
|
| 1152 |
+
top_p=1.0, # Keep no nucleus sampling
|
| 1153 |
+
repetition_penalty=1.0, # Keep no repetition penalty
|
| 1154 |
+
num_beams=1, # Ensure greedy decoding (faster than beam search)
|
| 1155 |
+
use_cache=True, # Enable KV cache for speed
|
| 1156 |
+
early_stopping=True, # Stop at EOS token
|
| 1157 |
+
pad_token_id=self.tokenizer.pad_token_id, # Proper padding
|
| 1158 |
+
eos_token_id=self.tokenizer.eos_token_id, # Proper stopping
|
| 1159 |
+
)
|
| 1160 |
+
|
| 1161 |
+
# Decode the output
|
| 1162 |
+
generated_ids_trimmed = [
|
| 1163 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 1164 |
+
]
|
| 1165 |
+
output_text = self.processor.batch_decode(
|
| 1166 |
+
generated_ids_trimmed,
|
| 1167 |
+
skip_special_tokens=True,
|
| 1168 |
+
clean_up_tokenization_spaces=False
|
| 1169 |
+
)[0]
|
| 1170 |
+
|
| 1171 |
+
if output_text and output_text.strip():
|
| 1172 |
+
text = output_text.strip()
|
| 1173 |
+
|
| 1174 |
+
# ADDED: Filter out any response that looks like an explanation or apology
|
| 1175 |
+
# Common patterns that indicate the model is being "helpful" instead of just extracting
|
| 1176 |
+
unwanted_patterns = [
|
| 1177 |
+
"죄송합니다", # "I apologize"
|
| 1178 |
+
"sorry",
|
| 1179 |
+
"apologize",
|
| 1180 |
+
"이미지에는", # "in this image"
|
| 1181 |
+
"텍스트가 없습니다", # "there is no text"
|
| 1182 |
+
"I cannot",
|
| 1183 |
+
"I don't see",
|
| 1184 |
+
"There is no",
|
| 1185 |
+
"질문이 있으시면", # "if you have questions"
|
| 1186 |
+
]
|
| 1187 |
+
|
| 1188 |
+
# Check if response contains unwanted patterns
|
| 1189 |
+
text_lower = text.lower()
|
| 1190 |
+
is_explanation = any(pattern.lower() in text_lower for pattern in unwanted_patterns)
|
| 1191 |
+
|
| 1192 |
+
# Also check if the response is suspiciously long for a bubble
|
| 1193 |
+
# Most manga bubbles are short, if we get 50+ chars it might be an explanation
|
| 1194 |
+
is_too_long = len(text) > 100 and ('.' in text or ',' in text or '!' in text)
|
| 1195 |
+
|
| 1196 |
+
if is_explanation or is_too_long:
|
| 1197 |
+
self._log(f"⚠️ Model returned explanation instead of text, ignoring", "warning")
|
| 1198 |
+
# Return empty result or just skip this region
|
| 1199 |
+
return results
|
| 1200 |
+
|
| 1201 |
+
# Check language
|
| 1202 |
+
has_korean = any('\uAC00' <= c <= '\uD7AF' for c in text)
|
| 1203 |
+
has_japanese = any('\u3040' <= c <= '\u309F' or '\u30A0' <= c <= '\u30FF' for c in text)
|
| 1204 |
+
has_chinese = any('\u4E00' <= c <= '\u9FFF' for c in text)
|
| 1205 |
+
|
| 1206 |
+
if has_korean:
|
| 1207 |
+
self._log(f"✅ Korean detected: {text[:50]}...")
|
| 1208 |
+
elif has_japanese:
|
| 1209 |
+
self._log(f"✅ Japanese detected: {text[:50]}...")
|
| 1210 |
+
elif has_chinese:
|
| 1211 |
+
self._log(f"✅ Chinese detected: {text[:50]}...")
|
| 1212 |
+
else:
|
| 1213 |
+
self._log(f"✅ Text: {text[:50]}...")
|
| 1214 |
+
|
| 1215 |
+
results.append(OCRResult(
|
| 1216 |
+
text=text,
|
| 1217 |
+
bbox=(0, 0, w, h),
|
| 1218 |
+
confidence=0.9,
|
| 1219 |
+
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
|
| 1220 |
+
))
|
| 1221 |
+
else:
|
| 1222 |
+
self._log("⚠️ No text detected", "warning")
|
| 1223 |
+
|
| 1224 |
+
except Exception as e:
|
| 1225 |
+
self._log(f"❌ Error: {str(e)}", "error")
|
| 1226 |
+
import traceback
|
| 1227 |
+
self._log(traceback.format_exc(), "debug")
|
| 1228 |
+
|
| 1229 |
+
return results
|
| 1230 |
+
|
| 1231 |
+
class EasyOCRProvider(OCRProvider):
|
| 1232 |
+
"""EasyOCR provider for multiple languages"""
|
| 1233 |
+
|
| 1234 |
+
def __init__(self, log_callback=None, languages=None):
|
| 1235 |
+
super().__init__(log_callback)
|
| 1236 |
+
# Default to safe language combination
|
| 1237 |
+
self.languages = languages or ['ja', 'en'] # Safe default
|
| 1238 |
+
self._validate_language_combination()
|
| 1239 |
+
|
| 1240 |
+
def _validate_language_combination(self):
|
| 1241 |
+
"""Validate and fix EasyOCR language combinations"""
|
| 1242 |
+
# EasyOCR language compatibility rules
|
| 1243 |
+
incompatible_pairs = [
|
| 1244 |
+
(['ja', 'ko'], 'Japanese and Korean cannot be used together'),
|
| 1245 |
+
(['ja', 'zh'], 'Japanese and Chinese cannot be used together'),
|
| 1246 |
+
(['ko', 'zh'], 'Korean and Chinese cannot be used together')
|
| 1247 |
+
]
|
| 1248 |
+
|
| 1249 |
+
for incompatible, reason in incompatible_pairs:
|
| 1250 |
+
if all(lang in self.languages for lang in incompatible):
|
| 1251 |
+
self._log(f"⚠️ EasyOCR: {reason}", "warning")
|
| 1252 |
+
# Keep first language + English
|
| 1253 |
+
self.languages = [self.languages[0], 'en']
|
| 1254 |
+
self._log(f"🔧 Auto-adjusted to: {self.languages}", "info")
|
| 1255 |
+
break
|
| 1256 |
+
|
| 1257 |
+
def check_installation(self) -> bool:
|
| 1258 |
+
"""Check if easyocr is installed"""
|
| 1259 |
+
try:
|
| 1260 |
+
import easyocr
|
| 1261 |
+
self.is_installed = True
|
| 1262 |
+
return True
|
| 1263 |
+
except ImportError:
|
| 1264 |
+
return False
|
| 1265 |
+
|
| 1266 |
+
def install(self, progress_callback=None) -> bool:
|
| 1267 |
+
"""Install easyocr"""
|
| 1268 |
+
pass
|
| 1269 |
+
|
| 1270 |
+
def load_model(self, **kwargs) -> bool:
|
| 1271 |
+
"""Load easyocr model"""
|
| 1272 |
+
try:
|
| 1273 |
+
if not self.is_installed and not self.check_installation():
|
| 1274 |
+
self._log("❌ easyocr not installed", "error")
|
| 1275 |
+
return False
|
| 1276 |
+
|
| 1277 |
+
self._log(f"🔥 Loading easyocr model for languages: {self.languages}...")
|
| 1278 |
+
import easyocr
|
| 1279 |
+
|
| 1280 |
+
# This will download models on first run
|
| 1281 |
+
self.model = easyocr.Reader(self.languages, gpu=True)
|
| 1282 |
+
self.is_loaded = True
|
| 1283 |
+
|
| 1284 |
+
self._log("✅ easyocr model loaded successfully")
|
| 1285 |
+
return True
|
| 1286 |
+
|
| 1287 |
+
except Exception as e:
|
| 1288 |
+
self._log(f"❌ Failed to load easyocr: {str(e)}", "error")
|
| 1289 |
+
# Try CPU mode if GPU fails
|
| 1290 |
+
try:
|
| 1291 |
+
import easyocr
|
| 1292 |
+
self.model = easyocr.Reader(self.languages, gpu=False)
|
| 1293 |
+
self.is_loaded = True
|
| 1294 |
+
self._log("✅ easyocr loaded in CPU mode")
|
| 1295 |
+
return True
|
| 1296 |
+
except:
|
| 1297 |
+
return False
|
| 1298 |
+
|
| 1299 |
+
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1300 |
+
"""Detect text using easyocr"""
|
| 1301 |
+
results = []
|
| 1302 |
+
|
| 1303 |
+
try:
|
| 1304 |
+
if not self.is_loaded:
|
| 1305 |
+
if not self.load_model():
|
| 1306 |
+
return results
|
| 1307 |
+
|
| 1308 |
+
# EasyOCR can work directly with numpy arrays
|
| 1309 |
+
ocr_results = self.model.readtext(image, detail=1)
|
| 1310 |
+
|
| 1311 |
+
# Parse results
|
| 1312 |
+
for (bbox, text, confidence) in ocr_results:
|
| 1313 |
+
# bbox is a list of 4 points
|
| 1314 |
+
xs = [point[0] for point in bbox]
|
| 1315 |
+
ys = [point[1] for point in bbox]
|
| 1316 |
+
x_min, x_max = min(xs), max(xs)
|
| 1317 |
+
y_min, y_max = min(ys), max(ys)
|
| 1318 |
+
|
| 1319 |
+
results.append(OCRResult(
|
| 1320 |
+
text=text,
|
| 1321 |
+
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
|
| 1322 |
+
confidence=confidence,
|
| 1323 |
+
vertices=[(int(p[0]), int(p[1])) for p in bbox]
|
| 1324 |
+
))
|
| 1325 |
+
|
| 1326 |
+
self._log(f"✅ Detected {len(results)} text regions")
|
| 1327 |
+
|
| 1328 |
+
except Exception as e:
|
| 1329 |
+
self._log(f"❌ Error in easyocr detection: {str(e)}", "error")
|
| 1330 |
+
|
| 1331 |
+
return results
|
| 1332 |
+
|
| 1333 |
+
|
| 1334 |
+
class PaddleOCRProvider(OCRProvider):
|
| 1335 |
+
"""PaddleOCR provider with memory safety measures"""
|
| 1336 |
+
|
| 1337 |
+
def check_installation(self) -> bool:
|
| 1338 |
+
"""Check if paddleocr is installed"""
|
| 1339 |
+
try:
|
| 1340 |
+
from paddleocr import PaddleOCR
|
| 1341 |
+
self.is_installed = True
|
| 1342 |
+
return True
|
| 1343 |
+
except ImportError:
|
| 1344 |
+
return False
|
| 1345 |
+
|
| 1346 |
+
def install(self, progress_callback=None) -> bool:
|
| 1347 |
+
"""Install paddleocr"""
|
| 1348 |
+
pass
|
| 1349 |
+
|
| 1350 |
+
def load_model(self, **kwargs) -> bool:
|
| 1351 |
+
"""Load paddleocr model with memory-safe configurations"""
|
| 1352 |
+
try:
|
| 1353 |
+
if not self.is_installed and not self.check_installation():
|
| 1354 |
+
self._log("❌ paddleocr not installed", "error")
|
| 1355 |
+
return False
|
| 1356 |
+
|
| 1357 |
+
self._log("🔥 Loading PaddleOCR model...")
|
| 1358 |
+
|
| 1359 |
+
# Set memory-safe environment variables BEFORE importing
|
| 1360 |
+
import os
|
| 1361 |
+
os.environ['OMP_NUM_THREADS'] = '1' # Prevent OpenMP conflicts
|
| 1362 |
+
os.environ['MKL_NUM_THREADS'] = '1' # Prevent MKL conflicts
|
| 1363 |
+
os.environ['OPENBLAS_NUM_THREADS'] = '1' # Prevent OpenBLAS conflicts
|
| 1364 |
+
os.environ['FLAGS_use_mkldnn'] = '0' # Disable MKL-DNN
|
| 1365 |
+
|
| 1366 |
+
from paddleocr import PaddleOCR
|
| 1367 |
+
|
| 1368 |
+
# Try memory-safe configurations
|
| 1369 |
+
configs_to_try = [
|
| 1370 |
+
# Config 1: Most memory-safe configuration
|
| 1371 |
+
{
|
| 1372 |
+
'use_angle_cls': False, # Disable angle to save memory
|
| 1373 |
+
'lang': 'ch',
|
| 1374 |
+
'rec_batch_num': 1, # Process one at a time
|
| 1375 |
+
'max_text_length': 100, # Limit text length
|
| 1376 |
+
'drop_score': 0.5, # Higher threshold to reduce detections
|
| 1377 |
+
'cpu_threads': 1, # Single thread to avoid conflicts
|
| 1378 |
+
},
|
| 1379 |
+
# Config 2: Minimal memory footprint
|
| 1380 |
+
{
|
| 1381 |
+
'lang': 'ch',
|
| 1382 |
+
'rec_batch_num': 1,
|
| 1383 |
+
'cpu_threads': 1,
|
| 1384 |
+
},
|
| 1385 |
+
# Config 3: Absolute minimal
|
| 1386 |
+
{
|
| 1387 |
+
'lang': 'ch'
|
| 1388 |
+
},
|
| 1389 |
+
# Config 4: Empty config
|
| 1390 |
+
{}
|
| 1391 |
+
]
|
| 1392 |
+
|
| 1393 |
+
for i, config in enumerate(configs_to_try):
|
| 1394 |
+
try:
|
| 1395 |
+
self._log(f" Trying configuration {i+1}/{len(configs_to_try)}: {config}")
|
| 1396 |
+
|
| 1397 |
+
# Force garbage collection before loading
|
| 1398 |
+
import gc
|
| 1399 |
+
gc.collect()
|
| 1400 |
+
|
| 1401 |
+
self.model = PaddleOCR(**config)
|
| 1402 |
+
self.is_loaded = True
|
| 1403 |
+
self.current_config = config
|
| 1404 |
+
self._log(f"✅ PaddleOCR loaded successfully with config: {config}")
|
| 1405 |
+
return True
|
| 1406 |
+
except Exception as e:
|
| 1407 |
+
error_str = str(e)
|
| 1408 |
+
self._log(f" Config {i+1} failed: {error_str}", "debug")
|
| 1409 |
+
|
| 1410 |
+
# Clean up on failure
|
| 1411 |
+
if hasattr(self, 'model'):
|
| 1412 |
+
del self.model
|
| 1413 |
+
gc.collect()
|
| 1414 |
+
continue
|
| 1415 |
+
|
| 1416 |
+
self._log(f"❌ PaddleOCR failed to load with any configuration", "error")
|
| 1417 |
+
return False
|
| 1418 |
+
|
| 1419 |
+
except Exception as e:
|
| 1420 |
+
self._log(f"❌ Failed to load paddleocr: {str(e)}", "error")
|
| 1421 |
+
import traceback
|
| 1422 |
+
self._log(traceback.format_exc(), "debug")
|
| 1423 |
+
return False
|
| 1424 |
+
|
| 1425 |
+
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1426 |
+
"""Detect text with memory safety measures"""
|
| 1427 |
+
results = []
|
| 1428 |
+
|
| 1429 |
+
try:
|
| 1430 |
+
if not self.is_loaded:
|
| 1431 |
+
if not self.load_model():
|
| 1432 |
+
return results
|
| 1433 |
+
|
| 1434 |
+
import cv2
|
| 1435 |
+
import numpy as np
|
| 1436 |
+
import gc
|
| 1437 |
+
|
| 1438 |
+
# Memory safety: Ensure image isn't too large
|
| 1439 |
+
h, w = image.shape[:2] if len(image.shape) >= 2 else (0, 0)
|
| 1440 |
+
|
| 1441 |
+
# Limit image size to prevent memory issues
|
| 1442 |
+
MAX_DIMENSION = 1500
|
| 1443 |
+
if h > MAX_DIMENSION or w > MAX_DIMENSION:
|
| 1444 |
+
scale = min(MAX_DIMENSION/h, MAX_DIMENSION/w)
|
| 1445 |
+
new_h, new_w = int(h*scale), int(w*scale)
|
| 1446 |
+
self._log(f"⚠️ Resizing large image from {w}x{h} to {new_w}x{new_h} for memory safety", "warning")
|
| 1447 |
+
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA)
|
| 1448 |
+
scale_factor = 1/scale
|
| 1449 |
+
else:
|
| 1450 |
+
scale_factor = 1.0
|
| 1451 |
+
|
| 1452 |
+
# Ensure correct format
|
| 1453 |
+
if len(image.shape) == 2: # Grayscale
|
| 1454 |
+
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
|
| 1455 |
+
elif len(image.shape) == 4: # Batch
|
| 1456 |
+
image = image[0]
|
| 1457 |
+
|
| 1458 |
+
# Ensure uint8 type
|
| 1459 |
+
if image.dtype != np.uint8:
|
| 1460 |
+
if image.max() <= 1.0:
|
| 1461 |
+
image = (image * 255).astype(np.uint8)
|
| 1462 |
+
else:
|
| 1463 |
+
image = image.astype(np.uint8)
|
| 1464 |
+
|
| 1465 |
+
# Make a copy to avoid memory corruption
|
| 1466 |
+
image_copy = image.copy()
|
| 1467 |
+
|
| 1468 |
+
# Force garbage collection before OCR
|
| 1469 |
+
gc.collect()
|
| 1470 |
+
|
| 1471 |
+
# Process with timeout protection
|
| 1472 |
+
import signal
|
| 1473 |
+
import threading
|
| 1474 |
+
|
| 1475 |
+
ocr_results = None
|
| 1476 |
+
ocr_error = None
|
| 1477 |
+
|
| 1478 |
+
def run_ocr():
|
| 1479 |
+
nonlocal ocr_results, ocr_error
|
| 1480 |
+
try:
|
| 1481 |
+
ocr_results = self.model.ocr(image_copy)
|
| 1482 |
+
except Exception as e:
|
| 1483 |
+
ocr_error = e
|
| 1484 |
+
|
| 1485 |
+
# Run OCR in a separate thread with timeout
|
| 1486 |
+
ocr_thread = threading.Thread(target=run_ocr)
|
| 1487 |
+
ocr_thread.daemon = True
|
| 1488 |
+
ocr_thread.start()
|
| 1489 |
+
ocr_thread.join(timeout=30) # 30 second timeout
|
| 1490 |
+
|
| 1491 |
+
if ocr_thread.is_alive():
|
| 1492 |
+
self._log("❌ PaddleOCR timeout - taking too long", "error")
|
| 1493 |
+
return results
|
| 1494 |
+
|
| 1495 |
+
if ocr_error:
|
| 1496 |
+
raise ocr_error
|
| 1497 |
+
|
| 1498 |
+
# Parse results
|
| 1499 |
+
results = self._parse_ocr_results(ocr_results)
|
| 1500 |
+
|
| 1501 |
+
# Scale coordinates back if image was resized
|
| 1502 |
+
if scale_factor != 1.0 and results:
|
| 1503 |
+
for r in results:
|
| 1504 |
+
x, y, width, height = r.bbox
|
| 1505 |
+
r.bbox = (int(x*scale_factor), int(y*scale_factor),
|
| 1506 |
+
int(width*scale_factor), int(height*scale_factor))
|
| 1507 |
+
r.vertices = [(int(v[0]*scale_factor), int(v[1]*scale_factor))
|
| 1508 |
+
for v in r.vertices]
|
| 1509 |
+
|
| 1510 |
+
if results:
|
| 1511 |
+
self._log(f"✅ Detected {len(results)} text regions", "info")
|
| 1512 |
+
else:
|
| 1513 |
+
self._log("No text regions found", "debug")
|
| 1514 |
+
|
| 1515 |
+
# Clean up
|
| 1516 |
+
del image_copy
|
| 1517 |
+
gc.collect()
|
| 1518 |
+
|
| 1519 |
+
except Exception as e:
|
| 1520 |
+
error_msg = str(e) if str(e) else type(e).__name__
|
| 1521 |
+
|
| 1522 |
+
if "memory" in error_msg.lower() or "0x" in error_msg:
|
| 1523 |
+
self._log("❌ Memory access violation in PaddleOCR", "error")
|
| 1524 |
+
self._log(" This is a known Windows issue with PaddleOCR", "info")
|
| 1525 |
+
self._log(" Please switch to EasyOCR or manga-ocr instead", "warning")
|
| 1526 |
+
elif "trace_order.size()" in error_msg:
|
| 1527 |
+
self._log("❌ PaddleOCR internal error", "error")
|
| 1528 |
+
self._log(" Please switch to EasyOCR or manga-ocr", "warning")
|
| 1529 |
+
else:
|
| 1530 |
+
self._log(f"❌ Error in paddleocr detection: {error_msg}", "error")
|
| 1531 |
+
|
| 1532 |
+
import traceback
|
| 1533 |
+
self._log(traceback.format_exc(), "debug")
|
| 1534 |
+
|
| 1535 |
+
return results
|
| 1536 |
+
|
| 1537 |
+
def _parse_ocr_results(self, ocr_results) -> List[OCRResult]:
|
| 1538 |
+
"""Parse OCR results safely"""
|
| 1539 |
+
results = []
|
| 1540 |
+
|
| 1541 |
+
if isinstance(ocr_results, bool) and ocr_results == False:
|
| 1542 |
+
return results
|
| 1543 |
+
|
| 1544 |
+
if ocr_results is None or not isinstance(ocr_results, list):
|
| 1545 |
+
return results
|
| 1546 |
+
|
| 1547 |
+
if len(ocr_results) == 0:
|
| 1548 |
+
return results
|
| 1549 |
+
|
| 1550 |
+
# Handle batch format
|
| 1551 |
+
if isinstance(ocr_results[0], list) and len(ocr_results[0]) > 0:
|
| 1552 |
+
first_item = ocr_results[0][0]
|
| 1553 |
+
if isinstance(first_item, list) and len(first_item) > 0:
|
| 1554 |
+
if isinstance(first_item[0], (list, tuple)) and len(first_item[0]) == 2:
|
| 1555 |
+
ocr_results = ocr_results[0]
|
| 1556 |
+
|
| 1557 |
+
# Parse detections
|
| 1558 |
+
for detection in ocr_results:
|
| 1559 |
+
if not detection or isinstance(detection, bool):
|
| 1560 |
+
continue
|
| 1561 |
+
|
| 1562 |
+
if not isinstance(detection, (list, tuple)) or len(detection) < 2:
|
| 1563 |
+
continue
|
| 1564 |
+
|
| 1565 |
+
try:
|
| 1566 |
+
bbox_points = detection[0]
|
| 1567 |
+
text_data = detection[1]
|
| 1568 |
+
|
| 1569 |
+
if not isinstance(bbox_points, (list, tuple)) or len(bbox_points) != 4:
|
| 1570 |
+
continue
|
| 1571 |
+
|
| 1572 |
+
if not isinstance(text_data, (tuple, list)) or len(text_data) < 2:
|
| 1573 |
+
continue
|
| 1574 |
+
|
| 1575 |
+
text = str(text_data[0]).strip()
|
| 1576 |
+
confidence = float(text_data[1])
|
| 1577 |
+
|
| 1578 |
+
if not text or confidence < 0.3:
|
| 1579 |
+
continue
|
| 1580 |
+
|
| 1581 |
+
xs = [float(p[0]) for p in bbox_points]
|
| 1582 |
+
ys = [float(p[1]) for p in bbox_points]
|
| 1583 |
+
x_min, x_max = min(xs), max(xs)
|
| 1584 |
+
y_min, y_max = min(ys), max(ys)
|
| 1585 |
+
|
| 1586 |
+
if (x_max - x_min) < 5 or (y_max - y_min) < 5:
|
| 1587 |
+
continue
|
| 1588 |
+
|
| 1589 |
+
results.append(OCRResult(
|
| 1590 |
+
text=text,
|
| 1591 |
+
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
|
| 1592 |
+
confidence=confidence,
|
| 1593 |
+
vertices=[(int(p[0]), int(p[1])) for p in bbox_points]
|
| 1594 |
+
))
|
| 1595 |
+
|
| 1596 |
+
except Exception:
|
| 1597 |
+
continue
|
| 1598 |
+
|
| 1599 |
+
return results
|
| 1600 |
+
|
| 1601 |
+
class DocTROCRProvider(OCRProvider):
|
| 1602 |
+
"""DocTR OCR provider"""
|
| 1603 |
+
|
| 1604 |
+
def check_installation(self) -> bool:
|
| 1605 |
+
"""Check if doctr is installed"""
|
| 1606 |
+
try:
|
| 1607 |
+
from doctr.models import ocr_predictor
|
| 1608 |
+
self.is_installed = True
|
| 1609 |
+
return True
|
| 1610 |
+
except ImportError:
|
| 1611 |
+
return False
|
| 1612 |
+
|
| 1613 |
+
def install(self, progress_callback=None) -> bool:
|
| 1614 |
+
"""Install doctr"""
|
| 1615 |
+
pass
|
| 1616 |
+
|
| 1617 |
+
def load_model(self, **kwargs) -> bool:
|
| 1618 |
+
"""Load doctr model"""
|
| 1619 |
+
try:
|
| 1620 |
+
if not self.is_installed and not self.check_installation():
|
| 1621 |
+
self._log("❌ doctr not installed", "error")
|
| 1622 |
+
return False
|
| 1623 |
+
|
| 1624 |
+
self._log("🔥 Loading DocTR model...")
|
| 1625 |
+
from doctr.models import ocr_predictor
|
| 1626 |
+
|
| 1627 |
+
# Load pretrained model
|
| 1628 |
+
self.model = ocr_predictor(pretrained=True)
|
| 1629 |
+
self.is_loaded = True
|
| 1630 |
+
|
| 1631 |
+
self._log("✅ DocTR model loaded successfully")
|
| 1632 |
+
return True
|
| 1633 |
+
|
| 1634 |
+
except Exception as e:
|
| 1635 |
+
self._log(f"❌ Failed to load doctr: {str(e)}", "error")
|
| 1636 |
+
return False
|
| 1637 |
+
|
| 1638 |
+
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1639 |
+
"""Detect text using doctr"""
|
| 1640 |
+
results = []
|
| 1641 |
+
|
| 1642 |
+
try:
|
| 1643 |
+
if not self.is_loaded:
|
| 1644 |
+
if not self.load_model():
|
| 1645 |
+
return results
|
| 1646 |
+
|
| 1647 |
+
from doctr.io import DocumentFile
|
| 1648 |
+
|
| 1649 |
+
# DocTR expects document format
|
| 1650 |
+
# Convert numpy array to PIL and save temporarily
|
| 1651 |
+
import tempfile
|
| 1652 |
+
import cv2
|
| 1653 |
+
|
| 1654 |
+
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
| 1655 |
+
cv2.imwrite(tmp.name, image)
|
| 1656 |
+
doc = DocumentFile.from_images(tmp.name)
|
| 1657 |
+
|
| 1658 |
+
# Run OCR
|
| 1659 |
+
result = self.model(doc)
|
| 1660 |
+
|
| 1661 |
+
# Parse results
|
| 1662 |
+
h, w = image.shape[:2]
|
| 1663 |
+
for page in result.pages:
|
| 1664 |
+
for block in page.blocks:
|
| 1665 |
+
for line in block.lines:
|
| 1666 |
+
for word in line.words:
|
| 1667 |
+
# Handle different geometry formats
|
| 1668 |
+
geometry = word.geometry
|
| 1669 |
+
|
| 1670 |
+
if len(geometry) == 4:
|
| 1671 |
+
# Standard format: (x1, y1, x2, y2)
|
| 1672 |
+
x1, y1, x2, y2 = geometry
|
| 1673 |
+
elif len(geometry) == 2:
|
| 1674 |
+
# Alternative format: ((x1, y1), (x2, y2))
|
| 1675 |
+
(x1, y1), (x2, y2) = geometry
|
| 1676 |
+
else:
|
| 1677 |
+
self._log(f"Unexpected geometry format: {geometry}", "warning")
|
| 1678 |
+
continue
|
| 1679 |
+
|
| 1680 |
+
# Convert relative coordinates to absolute
|
| 1681 |
+
x1, x2 = int(x1 * w), int(x2 * w)
|
| 1682 |
+
y1, y2 = int(y1 * h), int(y2 * h)
|
| 1683 |
+
|
| 1684 |
+
results.append(OCRResult(
|
| 1685 |
+
text=word.value,
|
| 1686 |
+
bbox=(x1, y1, x2 - x1, y2 - y1),
|
| 1687 |
+
confidence=word.confidence,
|
| 1688 |
+
vertices=[(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
|
| 1689 |
+
))
|
| 1690 |
+
|
| 1691 |
+
# Clean up temp file
|
| 1692 |
+
try:
|
| 1693 |
+
os.unlink(tmp.name)
|
| 1694 |
+
except:
|
| 1695 |
+
pass
|
| 1696 |
+
|
| 1697 |
+
self._log(f"DocTR detected {len(results)} text regions")
|
| 1698 |
+
|
| 1699 |
+
except Exception as e:
|
| 1700 |
+
self._log(f"Error in doctr detection: {str(e)}", "error")
|
| 1701 |
+
import traceback
|
| 1702 |
+
self._log(traceback.format_exc(), "error")
|
| 1703 |
+
|
| 1704 |
+
return results
|
| 1705 |
+
|
| 1706 |
+
|
| 1707 |
+
class RapidOCRProvider(OCRProvider):
|
| 1708 |
+
"""RapidOCR provider for fast local OCR"""
|
| 1709 |
+
|
| 1710 |
+
def check_installation(self) -> bool:
|
| 1711 |
+
"""Check if rapidocr is installed"""
|
| 1712 |
+
try:
|
| 1713 |
+
import rapidocr_onnxruntime
|
| 1714 |
+
self.is_installed = True
|
| 1715 |
+
return True
|
| 1716 |
+
except ImportError:
|
| 1717 |
+
return False
|
| 1718 |
+
|
| 1719 |
+
def install(self, progress_callback=None) -> bool:
|
| 1720 |
+
"""Install rapidocr (requires manual pip install)"""
|
| 1721 |
+
# RapidOCR requires manual installation
|
| 1722 |
+
if progress_callback:
|
| 1723 |
+
progress_callback("RapidOCR requires manual pip installation")
|
| 1724 |
+
self._log("Run: pip install rapidocr-onnxruntime", "info")
|
| 1725 |
+
return False # Always return False since we can't auto-install
|
| 1726 |
+
|
| 1727 |
+
def load_model(self, **kwargs) -> bool:
|
| 1728 |
+
"""Load RapidOCR model"""
|
| 1729 |
+
try:
|
| 1730 |
+
if not self.is_installed and not self.check_installation():
|
| 1731 |
+
self._log("RapidOCR not installed", "error")
|
| 1732 |
+
return False
|
| 1733 |
+
|
| 1734 |
+
self._log("Loading RapidOCR...")
|
| 1735 |
+
from rapidocr_onnxruntime import RapidOCR
|
| 1736 |
+
|
| 1737 |
+
self.model = RapidOCR()
|
| 1738 |
+
self.is_loaded = True
|
| 1739 |
+
|
| 1740 |
+
self._log("RapidOCR model loaded successfully")
|
| 1741 |
+
return True
|
| 1742 |
+
|
| 1743 |
+
except Exception as e:
|
| 1744 |
+
self._log(f"Failed to load RapidOCR: {str(e)}", "error")
|
| 1745 |
+
return False
|
| 1746 |
+
|
| 1747 |
+
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
|
| 1748 |
+
"""Detect text using RapidOCR"""
|
| 1749 |
+
if not self.is_loaded:
|
| 1750 |
+
self._log("RapidOCR model not loaded", "error")
|
| 1751 |
+
return []
|
| 1752 |
+
|
| 1753 |
+
results = []
|
| 1754 |
+
|
| 1755 |
+
try:
|
| 1756 |
+
# Convert numpy array to PIL Image for RapidOCR
|
| 1757 |
+
if len(image.shape) == 3:
|
| 1758 |
+
# BGR to RGB
|
| 1759 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 1760 |
+
else:
|
| 1761 |
+
image_rgb = image
|
| 1762 |
+
|
| 1763 |
+
# RapidOCR expects PIL Image or numpy array
|
| 1764 |
+
ocr_results, _ = self.model(image_rgb)
|
| 1765 |
+
|
| 1766 |
+
if ocr_results:
|
| 1767 |
+
for result in ocr_results:
|
| 1768 |
+
# RapidOCR returns [bbox, text, confidence]
|
| 1769 |
+
bbox_points = result[0] # 4 corner points
|
| 1770 |
+
text = result[1]
|
| 1771 |
+
confidence = float(result[2])
|
| 1772 |
+
|
| 1773 |
+
if not text or not text.strip():
|
| 1774 |
+
continue
|
| 1775 |
+
|
| 1776 |
+
# Convert 4-point bbox to x,y,w,h format
|
| 1777 |
+
xs = [point[0] for point in bbox_points]
|
| 1778 |
+
ys = [point[1] for point in bbox_points]
|
| 1779 |
+
x_min, x_max = min(xs), max(xs)
|
| 1780 |
+
y_min, y_max = min(ys), max(ys)
|
| 1781 |
+
|
| 1782 |
+
results.append(OCRResult(
|
| 1783 |
+
text=text.strip(),
|
| 1784 |
+
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
|
| 1785 |
+
confidence=confidence,
|
| 1786 |
+
vertices=[(int(p[0]), int(p[1])) for p in bbox_points]
|
| 1787 |
+
))
|
| 1788 |
+
|
| 1789 |
+
self._log(f"Detected {len(results)} text regions")
|
| 1790 |
+
|
| 1791 |
+
except Exception as e:
|
| 1792 |
+
self._log(f"Error in RapidOCR detection: {str(e)}", "error")
|
| 1793 |
+
|
| 1794 |
+
return results
|
| 1795 |
+
|
| 1796 |
+
class OCRManager:
|
| 1797 |
+
"""Manager for multiple OCR providers"""
|
| 1798 |
+
|
| 1799 |
+
def __init__(self, log_callback=None):
|
| 1800 |
+
self.log_callback = log_callback
|
| 1801 |
+
self.providers = {
|
| 1802 |
+
'custom-api': CustomAPIProvider(log_callback) ,
|
| 1803 |
+
'manga-ocr': MangaOCRProvider(log_callback),
|
| 1804 |
+
'easyocr': EasyOCRProvider(log_callback),
|
| 1805 |
+
'paddleocr': PaddleOCRProvider(log_callback),
|
| 1806 |
+
'doctr': DocTROCRProvider(log_callback),
|
| 1807 |
+
'rapidocr': RapidOCRProvider(log_callback),
|
| 1808 |
+
'Qwen2-VL': Qwen2VL(log_callback)
|
| 1809 |
+
}
|
| 1810 |
+
self.current_provider = None
|
| 1811 |
+
self.stop_flag = None
|
| 1812 |
+
|
| 1813 |
+
def get_provider(self, name: str) -> Optional[OCRProvider]:
|
| 1814 |
+
"""Get OCR provider by name"""
|
| 1815 |
+
return self.providers.get(name)
|
| 1816 |
+
|
| 1817 |
+
def set_current_provider(self, name: str):
|
| 1818 |
+
"""Set current active provider"""
|
| 1819 |
+
if name in self.providers:
|
| 1820 |
+
self.current_provider = name
|
| 1821 |
+
return True
|
| 1822 |
+
return False
|
| 1823 |
+
|
| 1824 |
+
def check_provider_status(self, name: str) -> Dict[str, bool]:
|
| 1825 |
+
"""Check installation and loading status of provider"""
|
| 1826 |
+
provider = self.providers.get(name)
|
| 1827 |
+
if not provider:
|
| 1828 |
+
return {'installed': False, 'loaded': False}
|
| 1829 |
+
|
| 1830 |
+
result = {
|
| 1831 |
+
'installed': provider.check_installation(),
|
| 1832 |
+
'loaded': provider.is_loaded
|
| 1833 |
+
}
|
| 1834 |
+
if self.log_callback:
|
| 1835 |
+
self.log_callback(f"DEBUG: check_provider_status({name}) returning loaded={result['loaded']}", "debug")
|
| 1836 |
+
return result
|
| 1837 |
+
|
| 1838 |
+
def install_provider(self, name: str, progress_callback=None) -> bool:
|
| 1839 |
+
"""Install a provider"""
|
| 1840 |
+
provider = self.providers.get(name)
|
| 1841 |
+
if not provider:
|
| 1842 |
+
return False
|
| 1843 |
+
|
| 1844 |
+
return provider.install(progress_callback)
|
| 1845 |
+
|
| 1846 |
+
def load_provider(self, name: str, **kwargs) -> bool:
|
| 1847 |
+
"""Load a provider's model with optional parameters"""
|
| 1848 |
+
provider = self.providers.get(name)
|
| 1849 |
+
if not provider:
|
| 1850 |
+
return False
|
| 1851 |
+
|
| 1852 |
+
return provider.load_model(**kwargs) # <-- Passes model_size and any other kwargs
|
| 1853 |
+
|
| 1854 |
+
def shutdown(self):
|
| 1855 |
+
"""Release models/processors/tokenizers for all providers and clear caches."""
|
| 1856 |
+
try:
|
| 1857 |
+
import gc
|
| 1858 |
+
for name, provider in list(self.providers.items()):
|
| 1859 |
+
try:
|
| 1860 |
+
if hasattr(provider, 'model'):
|
| 1861 |
+
provider.model = None
|
| 1862 |
+
if hasattr(provider, 'processor'):
|
| 1863 |
+
provider.processor = None
|
| 1864 |
+
if hasattr(provider, 'tokenizer'):
|
| 1865 |
+
provider.tokenizer = None
|
| 1866 |
+
if hasattr(provider, 'reader'):
|
| 1867 |
+
provider.reader = None
|
| 1868 |
+
if hasattr(provider, 'is_loaded'):
|
| 1869 |
+
provider.is_loaded = False
|
| 1870 |
+
except Exception:
|
| 1871 |
+
pass
|
| 1872 |
+
gc.collect()
|
| 1873 |
+
try:
|
| 1874 |
+
import torch
|
| 1875 |
+
torch.cuda.empty_cache()
|
| 1876 |
+
except Exception:
|
| 1877 |
+
pass
|
| 1878 |
+
except Exception:
|
| 1879 |
+
pass
|
| 1880 |
+
|
| 1881 |
+
def detect_text(self, image: np.ndarray, provider_name: str = None, **kwargs) -> List[OCRResult]:
|
| 1882 |
+
"""Detect text using specified or current provider"""
|
| 1883 |
+
provider_name = provider_name or self.current_provider
|
| 1884 |
+
if not provider_name:
|
| 1885 |
+
return []
|
| 1886 |
+
|
| 1887 |
+
provider = self.providers.get(provider_name)
|
| 1888 |
+
if not provider:
|
| 1889 |
+
return []
|
| 1890 |
+
|
| 1891 |
+
return provider.detect_text(image, **kwargs)
|
| 1892 |
+
|
| 1893 |
+
def set_stop_flag(self, stop_flag):
|
| 1894 |
+
"""Set stop flag for all providers"""
|
| 1895 |
+
self.stop_flag = stop_flag
|
| 1896 |
+
for provider in self.providers.values():
|
| 1897 |
+
if hasattr(provider, 'set_stop_flag'):
|
| 1898 |
+
provider.set_stop_flag(stop_flag)
|
| 1899 |
+
|
| 1900 |
+
def reset_stop_flags(self):
|
| 1901 |
+
"""Reset stop flags for all providers"""
|
| 1902 |
+
for provider in self.providers.values():
|
| 1903 |
+
if hasattr(provider, 'reset_stop_flags'):
|
| 1904 |
+
provider.reset_stop_flags()
|