File size: 9,392 Bytes
779bb9b
6d6de4b
779bb9b
6d6de4b
779bb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6de4b
779bb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6de4b
779bb9b
 
 
 
 
 
 
 
 
 
6d6de4b
779bb9b
 
 
 
 
 
 
 
6d6de4b
779bb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6de4b
779bb9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d6de4b
779bb9b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
import plotly.figure_factory as ff
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
from io import StringIO
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# ======================================================
# βš™οΈ APP CONFIGURATION
# ======================================================
st.set_page_config(page_title="πŸ“Š Smart Data Analyst Pro", layout="wide")
st.title("πŸ“Š Smart Data Analyst Pro")
st.caption("AI that cleans, analyzes, and visualizes your data β€” powered by Hugging Face Inference API and local open-source models.")

# ======================================================
# πŸ” Load Environment Variables
# ======================================================
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
if not HF_TOKEN:
    st.error("❌ Missing HF_TOKEN. Please set it in your .env file.")
else:
    login(token=HF_TOKEN)

# ======================================================
# 🧠 MODEL SETTINGS
# ======================================================
with st.sidebar:
    st.header("βš™οΈ Model Settings")

    CLEANER_MODEL = st.selectbox(
        "Select Cleaner Model:",
        [
            "Qwen/Qwen2.5-Coder-7B-Instruct",
            "meta-llama/Meta-Llama-3-8B-Instruct",
            "microsoft/Phi-3-mini-4k-instruct"
        ],
        index=0
    )

    ANALYST_MODEL = st.selectbox(
        "Select Analysis Model (Local Open-Source Recommended):",
        [            
            "meta-llama/Meta-Llama-3-8B-Instruct",
            "Qwen/Qwen2.5-Coder-7B-Instruct",
            "HuggingFaceH4/zephyr-7b-beta",
            "mistralai/Mistral-7B-Instruct-v0.3"
        ],
        index=0
    )

    temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
    max_tokens = st.slider("Max Tokens", 128, 2048, 512)

# Initialize cleaner client (HF API)
cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)

# Initialize local analyst if open-source
local_analyst = None
if ANALYST_MODEL in ["meta-llama/Meta-Llama-3-8B-Instruct"]:
    try:
        tokenizer = AutoTokenizer.from_pretrained(ANALYST_MODEL)
        model = AutoModelForCausalLM.from_pretrained(ANALYST_MODEL)
        local_analyst = pipeline("text-generation", model=model, tokenizer=tokenizer)
    except Exception as e:
        st.warning(f"⚠️ Failed to load local analyst: {e}")

# ======================================================
# 🧩 DATA CLEANING FUNCTIONS
# ======================================================
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
    df = df.copy()
    df.dropna(axis=1, how="all", inplace=True)
    df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
    for col in df.columns:
        if df[col].dtype == "O":
            df[col].fillna(df[col].mode()[0] if not df[col].mode().empty else "Unknown", inplace=True)
        else:
            df[col].fillna(df[col].median(), inplace=True)
    df.drop_duplicates(inplace=True)
    return df

def ai_clean_dataset(df: pd.DataFrame) -> pd.DataFrame:
    raw_preview = df.head(5).to_csv(index=False)
    prompt = f"""
You are a Python data cleaning expert.
Clean and standardize the dataset dynamically:
- Handle missing values logically
- Correct and normalize column names
- Detect and fix datatype inconsistencies
- Remove duplicates or invalid rows
Return ONLY valid CSV text (no Markdown).

--- RAW SAMPLE ---
{raw_preview}
"""
    try:
        response = cleaner_client.text_generation(prompt, max_new_tokens=1024, temperature=0.1, return_full_text=False)
        cleaned_str = response.strip()
    except Exception as e:
        st.warning(f"⚠️ AI cleaning failed: {e}")
        return fallback_clean(df)

    cleaned_str = cleaned_str.replace("```csv","").replace("```","").replace("###","").replace(";",",").strip()
    lines = [l for l in cleaned_str.splitlines() if "," in l]
    cleaned_str = "\n".join(lines)

    try:
        cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
        cleaned_df.dropna(axis=1, how="all", inplace=True)
        cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
        return cleaned_df
    except Exception as e:
        st.warning(f"⚠️ CSV parse failed: {e}")
        return fallback_clean(df)

def summarize_dataframe(df: pd.DataFrame) -> str:
    lines = [f"Rows: {len(df)} | Columns: {len(df.columns)}", "Column summaries:"]
    for col in df.columns[:10]:
        non_null = int(df[col].notnull().sum())
        if pd.api.types.is_numeric_dtype(df[col]):
            mean = df[col].mean()
            median = df[col].median() if non_null > 0 else None
            lines.append(f"- {col}: mean={mean:.3f}, median={median}, non_null={non_null}")
        else:
            top = df[col].value_counts().head(3).to_dict()
            lines.append(f"- {col}: top_values={top}, non_null={non_null}")
    return "\n".join(lines)

# ======================================================
# 🧠 ANALYSIS FUNCTION
# ======================================================
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
    df_summary = summarize_dataframe(df)
    sample = df.head(6).to_csv(index=False)
    prompt = f"""
You are a data analyst.
Analyze '{dataset_name}' and answer the question below.
Base your insights only on the provided data.

--- SUMMARY ---
{df_summary}

--- SAMPLE DATA ---
{sample}

--- QUESTION ---
{user_query}

Respond concisely with key insights, numbers, patterns, and recommended steps.
"""
    if local_analyst:
        try:
            response = local_analyst(prompt, max_new_tokens=max_tokens, temperature=temperature)
            return response[0]['generated_text']
        except Exception as e:
            return f"⚠️ Local analysis failed: {e}"
    else:
        st.warning("⚠️ Analyst model is not local. Using HF API may require payment.")
        return "Analysis not available for free model."

# ======================================================
# πŸš€ MAIN APP
# ======================================================
uploaded = st.file_uploader("πŸ“Ž Upload CSV or Excel file", type=["csv", "xlsx"])

if uploaded:
    try:
        df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
    except Exception as e:
        st.error(f"❌ File load failed: {e}")
        st.stop()

    with st.spinner("🧼 AI Cleaning your dataset..."):
        cleaned_df = ai_clean_dataset(df)

    st.subheader("βœ… Cleaned Dataset Preview")
    st.dataframe(cleaned_df.head(), use_container_width=True)

    with st.expander("πŸ“‹ Cleaning Summary"):
        st.text(summarize_dataframe(cleaned_df))

    with st.expander("πŸ“ˆ Quick Visualizations", expanded=True):
        numeric_cols = cleaned_df.select_dtypes(include="number").columns.tolist()
        categorical_cols = cleaned_df.select_dtypes(exclude="number").columns.tolist()
        viz_type = st.selectbox("Visualization Type", ["Scatter Plot", "Histogram", "Box Plot", "Correlation Heatmap", "Categorical Count"])

        if viz_type == "Scatter Plot" and len(numeric_cols) >= 2:
            x = st.selectbox("X-axis", numeric_cols)
            y = st.selectbox("Y-axis", numeric_cols, index=min(1,len(numeric_cols)-1))
            color = st.selectbox("Color", ["None"] + categorical_cols)
            fig = px.scatter(cleaned_df, x=x, y=y, color=None if color=="None" else color)
            st.plotly_chart(fig, use_container_width=True)
        elif viz_type == "Histogram" and numeric_cols:
            col = st.selectbox("Column", numeric_cols)
            fig = px.histogram(cleaned_df, x=col, nbins=30)
            st.plotly_chart(fig, use_container_width=True)
        elif viz_type == "Box Plot" and numeric_cols:
            col = st.selectbox("Column", numeric_cols)
            fig = px.box(cleaned_df, y=col)
            st.plotly_chart(fig, use_container_width=True)
        elif viz_type == "Correlation Heatmap" and len(numeric_cols) > 1:
            corr = cleaned_df[numeric_cols].corr()
            fig = ff.create_annotated_heatmap(z=corr.values, x=list(corr.columns), y=list(corr.index),
                                              annotation_text=corr.round(2).values, showscale=True)
            st.plotly_chart(fig, use_container_width=True)
        elif viz_type == "Categorical Count" and categorical_cols:
            cat = st.selectbox("Category", categorical_cols)
            fig = px.bar(cleaned_df[cat].value_counts().reset_index(), x="index", y=cat)
            st.plotly_chart(fig, use_container_width=True)
        else:
            st.warning("⚠️ Not enough columns for this visualization type.")

    st.subheader("πŸ’¬ Ask AI About Your Data")
    user_query = st.text_area("Enter your question:", placeholder="e.g. What factors influence sales?")
    if st.button("Analyze with AI", use_container_width=True) and user_query:
        with st.spinner("πŸ€– Interpreting data..."):
            result = query_analysis_model(cleaned_df, user_query, uploaded.name)
        st.markdown("### πŸ’‘ Insights")
        st.markdown(result)
else:
    st.info("πŸ“₯ Upload a dataset to begin smart analysis.")