Spaces:
Sleeping
Sleeping
File size: 9,392 Bytes
779bb9b 6d6de4b 779bb9b 6d6de4b 779bb9b 6d6de4b 779bb9b 6d6de4b 779bb9b 6d6de4b 779bb9b 6d6de4b 779bb9b 6d6de4b 779bb9b 6d6de4b 779bb9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import os
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
import plotly.figure_factory as ff
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
from io import StringIO
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# ======================================================
# βοΈ APP CONFIGURATION
# ======================================================
st.set_page_config(page_title="π Smart Data Analyst Pro", layout="wide")
st.title("π Smart Data Analyst Pro")
st.caption("AI that cleans, analyzes, and visualizes your data β powered by Hugging Face Inference API and local open-source models.")
# ======================================================
# π Load Environment Variables
# ======================================================
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
if not HF_TOKEN:
st.error("β Missing HF_TOKEN. Please set it in your .env file.")
else:
login(token=HF_TOKEN)
# ======================================================
# π§ MODEL SETTINGS
# ======================================================
with st.sidebar:
st.header("βοΈ Model Settings")
CLEANER_MODEL = st.selectbox(
"Select Cleaner Model:",
[
"Qwen/Qwen2.5-Coder-7B-Instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"microsoft/Phi-3-mini-4k-instruct"
],
index=0
)
ANALYST_MODEL = st.selectbox(
"Select Analysis Model (Local Open-Source Recommended):",
[
"meta-llama/Meta-Llama-3-8B-Instruct",
"Qwen/Qwen2.5-Coder-7B-Instruct",
"HuggingFaceH4/zephyr-7b-beta",
"mistralai/Mistral-7B-Instruct-v0.3"
],
index=0
)
temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
max_tokens = st.slider("Max Tokens", 128, 2048, 512)
# Initialize cleaner client (HF API)
cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
# Initialize local analyst if open-source
local_analyst = None
if ANALYST_MODEL in ["meta-llama/Meta-Llama-3-8B-Instruct"]:
try:
tokenizer = AutoTokenizer.from_pretrained(ANALYST_MODEL)
model = AutoModelForCausalLM.from_pretrained(ANALYST_MODEL)
local_analyst = pipeline("text-generation", model=model, tokenizer=tokenizer)
except Exception as e:
st.warning(f"β οΈ Failed to load local analyst: {e}")
# ======================================================
# π§© DATA CLEANING FUNCTIONS
# ======================================================
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
df = df.copy()
df.dropna(axis=1, how="all", inplace=True)
df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
for col in df.columns:
if df[col].dtype == "O":
df[col].fillna(df[col].mode()[0] if not df[col].mode().empty else "Unknown", inplace=True)
else:
df[col].fillna(df[col].median(), inplace=True)
df.drop_duplicates(inplace=True)
return df
def ai_clean_dataset(df: pd.DataFrame) -> pd.DataFrame:
raw_preview = df.head(5).to_csv(index=False)
prompt = f"""
You are a Python data cleaning expert.
Clean and standardize the dataset dynamically:
- Handle missing values logically
- Correct and normalize column names
- Detect and fix datatype inconsistencies
- Remove duplicates or invalid rows
Return ONLY valid CSV text (no Markdown).
--- RAW SAMPLE ---
{raw_preview}
"""
try:
response = cleaner_client.text_generation(prompt, max_new_tokens=1024, temperature=0.1, return_full_text=False)
cleaned_str = response.strip()
except Exception as e:
st.warning(f"β οΈ AI cleaning failed: {e}")
return fallback_clean(df)
cleaned_str = cleaned_str.replace("```csv","").replace("```","").replace("###","").replace(";",",").strip()
lines = [l for l in cleaned_str.splitlines() if "," in l]
cleaned_str = "\n".join(lines)
try:
cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
cleaned_df.dropna(axis=1, how="all", inplace=True)
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
return cleaned_df
except Exception as e:
st.warning(f"β οΈ CSV parse failed: {e}")
return fallback_clean(df)
def summarize_dataframe(df: pd.DataFrame) -> str:
lines = [f"Rows: {len(df)} | Columns: {len(df.columns)}", "Column summaries:"]
for col in df.columns[:10]:
non_null = int(df[col].notnull().sum())
if pd.api.types.is_numeric_dtype(df[col]):
mean = df[col].mean()
median = df[col].median() if non_null > 0 else None
lines.append(f"- {col}: mean={mean:.3f}, median={median}, non_null={non_null}")
else:
top = df[col].value_counts().head(3).to_dict()
lines.append(f"- {col}: top_values={top}, non_null={non_null}")
return "\n".join(lines)
# ======================================================
# π§ ANALYSIS FUNCTION
# ======================================================
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
df_summary = summarize_dataframe(df)
sample = df.head(6).to_csv(index=False)
prompt = f"""
You are a data analyst.
Analyze '{dataset_name}' and answer the question below.
Base your insights only on the provided data.
--- SUMMARY ---
{df_summary}
--- SAMPLE DATA ---
{sample}
--- QUESTION ---
{user_query}
Respond concisely with key insights, numbers, patterns, and recommended steps.
"""
if local_analyst:
try:
response = local_analyst(prompt, max_new_tokens=max_tokens, temperature=temperature)
return response[0]['generated_text']
except Exception as e:
return f"β οΈ Local analysis failed: {e}"
else:
st.warning("β οΈ Analyst model is not local. Using HF API may require payment.")
return "Analysis not available for free model."
# ======================================================
# π MAIN APP
# ======================================================
uploaded = st.file_uploader("π Upload CSV or Excel file", type=["csv", "xlsx"])
if uploaded:
try:
df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
except Exception as e:
st.error(f"β File load failed: {e}")
st.stop()
with st.spinner("π§Ό AI Cleaning your dataset..."):
cleaned_df = ai_clean_dataset(df)
st.subheader("β
Cleaned Dataset Preview")
st.dataframe(cleaned_df.head(), use_container_width=True)
with st.expander("π Cleaning Summary"):
st.text(summarize_dataframe(cleaned_df))
with st.expander("π Quick Visualizations", expanded=True):
numeric_cols = cleaned_df.select_dtypes(include="number").columns.tolist()
categorical_cols = cleaned_df.select_dtypes(exclude="number").columns.tolist()
viz_type = st.selectbox("Visualization Type", ["Scatter Plot", "Histogram", "Box Plot", "Correlation Heatmap", "Categorical Count"])
if viz_type == "Scatter Plot" and len(numeric_cols) >= 2:
x = st.selectbox("X-axis", numeric_cols)
y = st.selectbox("Y-axis", numeric_cols, index=min(1,len(numeric_cols)-1))
color = st.selectbox("Color", ["None"] + categorical_cols)
fig = px.scatter(cleaned_df, x=x, y=y, color=None if color=="None" else color)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Histogram" and numeric_cols:
col = st.selectbox("Column", numeric_cols)
fig = px.histogram(cleaned_df, x=col, nbins=30)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Box Plot" and numeric_cols:
col = st.selectbox("Column", numeric_cols)
fig = px.box(cleaned_df, y=col)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Correlation Heatmap" and len(numeric_cols) > 1:
corr = cleaned_df[numeric_cols].corr()
fig = ff.create_annotated_heatmap(z=corr.values, x=list(corr.columns), y=list(corr.index),
annotation_text=corr.round(2).values, showscale=True)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Categorical Count" and categorical_cols:
cat = st.selectbox("Category", categorical_cols)
fig = px.bar(cleaned_df[cat].value_counts().reset_index(), x="index", y=cat)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("β οΈ Not enough columns for this visualization type.")
st.subheader("π¬ Ask AI About Your Data")
user_query = st.text_area("Enter your question:", placeholder="e.g. What factors influence sales?")
if st.button("Analyze with AI", use_container_width=True) and user_query:
with st.spinner("π€ Interpreting data..."):
result = query_analysis_model(cleaned_df, user_query, uploaded.name)
st.markdown("### π‘ Insights")
st.markdown(result)
else:
st.info("π₯ Upload a dataset to begin smart analysis.")
|