Spaces:
Sleeping
Sleeping
File size: 9,820 Bytes
779bb9b 4335246 8ee580a 64b21b3 8ee580a 5526d83 8ee580a 5526d83 8ee580a 5526d83 f62d086 5526d83 8ee580a 5526d83 8ee580a 5526d83 8ee580a f62d086 8ee580a f62d086 5526d83 8ee580a aefddc0 8ee580a aefddc0 8ee580a f776692 5526d83 8ee580a 5526d83 8ee580a d4cf179 5526d83 f776692 8ee580a f776692 8ee580a f776692 8ee580a 5526d83 8ee580a 5526d83 8ee580a f62d086 5526d83 8ee580a 5526d83 f62d086 5526d83 f62d086 5526d83 f62d086 5526d83 f62d086 5526d83 8ee580a f776692 8ee580a f776692 8ee580a f776692 4335246 f776692 8ee580a 5526d83 4335246 8ee580a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
import pandas as pd
import numpy as np
import streamlit as st
import plotly.express as px
import plotly.figure_factory as ff
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
import google.generativeai as genai
from io import StringIO
# ======================================================
# βοΈ APP CONFIGURATION
# ======================================================
st.set_page_config(page_title="π Smart Data Analyst Pro", layout="wide")
st.title("π Smart Data Analyst Pro")
st.caption("AI that cleans, analyzes, and visualizes your data β Hugging Face + Gemini compatible.")
# ======================================================
# π Load Environment Variables
# ======================================================
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
if not HF_TOKEN:
st.error("β Missing HF_TOKEN. Please set it in your .env file.")
else:
login(token=HF_TOKEN)
if GEMINI_API_KEY:
genai.api_key = GEMINI_API_KEY
else:
st.warning("β οΈ Gemini API key missing. Gemini 2.5 Flash will not work.")
# ======================================================
# π§ MODEL SETUP
# ======================================================
with st.sidebar:
st.header("βοΈ Model Settings")
CLEANER_MODEL = st.selectbox(
"Select Cleaner Model:",
[
"Qwen/Qwen2.5-Coder-14B",
"meta-llama/Meta-Llama-3-8B-Instruct",
"microsoft/Phi-3-mini-4k-instruct",
"mistralai/Mistral-7B-Instruct-v0.3"
],
index=0
)
ANALYST_MODEL = st.selectbox(
"Select Analysis Model:",
[
"Qwen/Qwen2.5-14B-Instruct",
"Gemini 2.5 Flash (Google)",
"mistralai/Mistral-7B-Instruct-v0.3",
"HuggingFaceH4/zephyr-7b-beta"
],
index=0
)
temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
max_tokens = st.slider("Max Tokens", 128, 4096, 1024)
# Initialize HF clients
hf_cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
hf_analyst_client = None
if ANALYST_MODEL != "Gemini 2.5 Flash (Google)":
hf_analyst_client = InferenceClient(model=ANALYST_MODEL, token=HF_TOKEN)
# ======================================================
# π§© SAFE GENERATION FUNCTION
# ======================================================
def safe_hf_generate(client, prompt, temperature=0.3, max_tokens=512):
try:
resp = client.text_generation(
prompt,
temperature=temperature,
max_new_tokens=max_tokens,
return_full_text=False,
)
return resp.strip()
except Exception as e:
if "Supported task: conversational" in str(e) or "not supported" in str(e):
chat_resp = client.chat_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=max_tokens,
temperature=temperature,
)
return chat_resp["choices"][0]["message"]["content"].strip()
else:
raise e
# ======================================================
# π§© SMART DATA CLEANING
# ======================================================
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
df = df.copy()
df.dropna(axis=1, how="all", inplace=True)
df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
for col in df.columns:
if df[col].dtype == "O":
if not df[col].mode().empty:
df[col].fillna(df[col].mode()[0], inplace=True)
else:
df[col].fillna("Unknown", inplace=True)
else:
df[col].fillna(df[col].median(), inplace=True)
df.drop_duplicates(inplace=True)
return df
def ai_clean_dataset(df: pd.DataFrame) -> (pd.DataFrame, str):
"""Return cleaned dataset and a message if cleaning failed."""
max_allowed_rows = 2000
if len(df) > max_allowed_rows:
return df, f"β οΈ Dataset too large for AI cleaning (>{max_allowed_rows} rows). Using original dataset."
csv_text = df.to_csv(index=False)
prompt = f"""
You are a professional data cleaning assistant.
Clean and standardize the dataset below dynamically:
1. Handle missing values
2. Fix column name inconsistencies
3. Convert data types (dates, numbers, categories)
4. Remove irrelevant or duplicate rows
Return ONLY a valid CSV text (no markdown, no explanations).
Dataset:
{csv_text}
"""
try:
cleaned_str = safe_hf_generate(hf_cleaner_client, prompt, temperature=0.1, max_tokens=4096)
cleaned_str = cleaned_str.replace("```csv", "").replace("```", "").replace("###", "").strip()
cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
return cleaned_df, ""
except Exception as e:
return df, f"β οΈ AI cleaning failed: {e}. Using original dataset for analysis."
# ======================================================
# π§© DATA ANALYSIS
# ======================================================
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
csv_text = df.to_csv(index=False)
prompt = f"""
You are a professional data analyst.
Analyze the dataset '{dataset_name}' and answer the user's question.
--- FULL DATA ---
{csv_text}
--- USER QUESTION ---
{user_query}
Respond with:
1. Key insights and patterns
2. Quantitative findings
3. Notable relationships or anomalies
4. Data-driven recommendations
"""
try:
if ANALYST_MODEL == "Gemini 2.5 Flash (Google)":
if GEMINI_API_KEY is None:
return "β οΈ Gemini API key missing."
response = genai.generate_text(
model="gemini-2.5-flash",
prompt=prompt,
temperature=temperature,
max_output_tokens=max_tokens
)
return getattr(response, "candidates", [{"content": "No response from Gemini."}])[0]["content"]
else:
return safe_hf_generate(hf_analyst_client, prompt, temperature=temperature, max_tokens=max_tokens)
except Exception as e:
return f"β οΈ Analysis failed: {e}"
# ======================================================
# π MAIN APP LOGIC
# ======================================================
uploaded = st.file_uploader("π Upload CSV or Excel file", type=["csv", "xlsx"])
if uploaded:
df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)
with st.spinner("π§Ό AI Cleaning your dataset..."):
cleaned_df, cleaning_msg = ai_clean_dataset(df)
if cleaning_msg:
st.warning(cleaning_msg)
st.info("π‘ Note: For AI cleaning to work best, datasets should ideally be under 2000 rows.")
st.subheader("β
Dataset Preview")
st.dataframe(cleaned_df.head(), use_container_width=True)
# ================== Quick Visualizations ==================
with st.expander("π Quick Visualizations", expanded=True):
numeric_cols = cleaned_df.select_dtypes(include="number").columns.tolist()
categorical_cols = cleaned_df.select_dtypes(exclude="number").columns.tolist()
viz_type = st.selectbox(
"Visualization Type",
["Scatter Plot", "Histogram", "Box Plot", "Correlation Heatmap", "Categorical Count"]
)
if viz_type == "Scatter Plot" and len(numeric_cols) >= 2:
x = st.selectbox("X-axis", numeric_cols)
y = st.selectbox("Y-axis", numeric_cols, index=min(1, len(numeric_cols)-1))
color = st.selectbox("Color", ["None"] + categorical_cols)
fig = px.scatter(cleaned_df, x=x, y=y, color=None if color=="None" else color)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Histogram" and numeric_cols:
col = st.selectbox("Column", numeric_cols)
fig = px.histogram(cleaned_df, x=col, nbins=30)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Box Plot" and numeric_cols:
col = st.selectbox("Column", numeric_cols)
fig = px.box(cleaned_df, y=col)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Correlation Heatmap" and len(numeric_cols) > 1:
corr = cleaned_df[numeric_cols].corr()
fig = ff.create_annotated_heatmap(
z=corr.values,
x=list(corr.columns),
y=list(corr.index),
annotation_text=corr.round(2).values,
showscale=True
)
st.plotly_chart(fig, use_container_width=True)
elif viz_type == "Categorical Count" and categorical_cols:
cat = st.selectbox("Category", categorical_cols)
fig = px.bar(cleaned_df[cat].value_counts().reset_index(), x="index", y=cat)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("β οΈ Not enough columns for this visualization type.")
# ================== AI Analysis ==================
st.subheader("π¬ Ask AI About Your Data")
user_query = st.text_area("Enter your question:", placeholder="e.g. What factors influence sales the most?")
if st.button("Analyze with AI", use_container_width=True) and user_query:
with st.spinner("π€ Interpreting data..."):
result = query_analysis_model(cleaned_df, user_query, uploaded.name)
st.markdown("### π‘ Insights")
st.markdown(result)
else:
st.info("π₯ Upload a dataset to begin smart analysis.")
|