Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| def subsequent_chunk_mask( | |
| size: int, | |
| chunk_size: int, | |
| num_left_chunks: int = -1, | |
| device: torch.device = torch.device("cpu"), | |
| ) -> torch.Tensor: | |
| """Create mask for subsequent steps (size, size) with chunk size, | |
| this is for streaming encoder | |
| Args: | |
| size (int): size of mask | |
| chunk_size (int): size of chunk | |
| num_left_chunks (int): number of left chunks | |
| <0: use full chunk | |
| >=0: use num_left_chunks | |
| device (torch.device): "cpu" or "cuda" or torch.Tensor.device | |
| Returns: | |
| torch.Tensor: mask | |
| Examples: | |
| >>> subsequent_chunk_mask(4, 2) | |
| [[1, 1, 0, 0], | |
| [1, 1, 0, 0], | |
| [1, 1, 1, 1], | |
| [1, 1, 1, 1]] | |
| """ | |
| # NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks | |
| pos_idx = torch.arange(size, device=device) | |
| block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size | |
| ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1) | |
| return ret | |
| def add_optional_chunk_mask(xs: torch.Tensor, | |
| masks: torch.Tensor, | |
| use_dynamic_chunk: bool, | |
| use_dynamic_left_chunk: bool, | |
| decoding_chunk_size: int, | |
| static_chunk_size: int, | |
| num_decoding_left_chunks: int, | |
| enable_full_context: bool = True): | |
| """ Apply optional mask for encoder. | |
| Args: | |
| xs (torch.Tensor): padded input, (B, L, D), L for max length | |
| mask (torch.Tensor): mask for xs, (B, 1, L) | |
| use_dynamic_chunk (bool): whether to use dynamic chunk or not | |
| use_dynamic_left_chunk (bool): whether to use dynamic left chunk for | |
| training. | |
| decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's | |
| 0: default for training, use random dynamic chunk. | |
| <0: for decoding, use full chunk. | |
| >0: for decoding, use fixed chunk size as set. | |
| static_chunk_size (int): chunk size for static chunk training/decoding | |
| if it's greater than 0, if use_dynamic_chunk is true, | |
| this parameter will be ignored | |
| num_decoding_left_chunks: number of left chunks, this is for decoding, | |
| the chunk size is decoding_chunk_size. | |
| >=0: use num_decoding_left_chunks | |
| <0: use all left chunks | |
| enable_full_context (bool): | |
| True: chunk size is either [1, 25] or full context(max_len) | |
| False: chunk size ~ U[1, 25] | |
| Returns: | |
| torch.Tensor: chunk mask of the input xs. | |
| """ | |
| # Whether to use chunk mask or not | |
| if use_dynamic_chunk: | |
| max_len = xs.size(1) | |
| if decoding_chunk_size < 0: | |
| chunk_size = max_len | |
| num_left_chunks = -1 | |
| elif decoding_chunk_size > 0: | |
| chunk_size = decoding_chunk_size | |
| num_left_chunks = num_decoding_left_chunks | |
| else: | |
| # chunk size is either [1, 25] or full context(max_len). | |
| # Since we use 4 times subsampling and allow up to 1s(100 frames) | |
| # delay, the maximum frame is 100 / 4 = 25. | |
| chunk_size = torch.randint(1, max_len, (1, )).item() | |
| num_left_chunks = -1 | |
| if chunk_size > max_len // 2 and enable_full_context: | |
| chunk_size = max_len | |
| else: | |
| chunk_size = chunk_size % 25 + 1 | |
| if use_dynamic_left_chunk: | |
| max_left_chunks = (max_len - 1) // chunk_size | |
| num_left_chunks = torch.randint(0, max_left_chunks, | |
| (1, )).item() | |
| chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size, | |
| num_left_chunks, | |
| xs.device) # (L, L) | |
| chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) | |
| chunk_masks = masks & chunk_masks # (B, L, L) | |
| elif static_chunk_size > 0: | |
| num_left_chunks = num_decoding_left_chunks | |
| chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size, | |
| num_left_chunks, | |
| xs.device) # (L, L) | |
| chunk_masks = chunk_masks.unsqueeze(0) # (1, L, L) | |
| chunk_masks = masks & chunk_masks # (B, L, L) | |
| else: | |
| chunk_masks = masks | |
| assert chunk_masks.dtype == torch.bool | |
| if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0: | |
| print('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!') | |
| chunk_masks[chunk_masks.sum(dim=-1) == 0] = True | |
| return chunk_masks | |
| def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: | |
| """Make mask tensor containing indices of padded part. | |
| See description of make_non_pad_mask. | |
| Args: | |
| lengths (torch.Tensor): Batch of lengths (B,). | |
| Returns: | |
| torch.Tensor: Mask tensor containing indices of padded part. | |
| Examples: | |
| >>> lengths = [5, 3, 2] | |
| >>> make_pad_mask(lengths) | |
| masks = [[0, 0, 0, 0 ,0], | |
| [0, 0, 0, 1, 1], | |
| [0, 0, 1, 1, 1]] | |
| """ | |
| batch_size = lengths.size(0) | |
| max_len = max_len if max_len > 0 else lengths.max().item() | |
| seq_range = torch.arange(0, | |
| max_len, | |
| dtype=torch.int64, | |
| device=lengths.device) | |
| seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) | |
| seq_length_expand = lengths.unsqueeze(-1) | |
| mask = seq_range_expand >= seq_length_expand | |
| return mask | |
| class EspnetRelPositionalEncoding(torch.nn.Module): | |
| """Relative positional encoding module (new implementation). | |
| Details can be found in https://github.com/espnet/espnet/pull/2816. | |
| See : Appendix B in https://arxiv.org/abs/1901.02860 | |
| Args: | |
| d_model (int): Embedding dimension. | |
| max_len (int): Maximum input length. | |
| """ | |
| def __init__(self, d_model: int, max_len: int = 5000): | |
| super(EspnetRelPositionalEncoding, self).__init__() | |
| self.d_model = d_model | |
| self.xscale = math.sqrt(self.d_model) | |
| self.pe = None | |
| self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
| def extend_pe(self, x: torch.Tensor): | |
| """Reset the positional encodings.""" | |
| if self.pe is not None: | |
| # self.pe contains both positive and negative parts | |
| # the length of self.pe is 2 * input_len - 1 | |
| if self.pe.size(1) >= x.size(1) * 2 - 1: | |
| if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
| self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
| return | |
| # Suppose `i` means to the position of query vecotr and `j` means the | |
| # position of key vector. We use position relative positions when keys | |
| # are to the left (i>j) and negative relative positions otherwise (i<j). | |
| pe_positive = torch.zeros(x.size(1), self.d_model) | |
| pe_negative = torch.zeros(x.size(1), self.d_model) | |
| position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
| * -(math.log(10000.0) / self.d_model) | |
| ) | |
| pe_positive[:, 0::2] = torch.sin(position * div_term) | |
| pe_positive[:, 1::2] = torch.cos(position * div_term) | |
| pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
| pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
| # Reserve the order of positive indices and concat both positive and | |
| # negative indices. This is used to support the shifting trick | |
| # as in https://arxiv.org/abs/1901.02860 | |
| pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
| pe_negative = pe_negative[1:].unsqueeze(0) | |
| pe = torch.cat([pe_positive, pe_negative], dim=1) | |
| self.pe = pe.to(device=x.device, dtype=x.dtype) | |
| def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \ | |
| -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| """ | |
| self.extend_pe(x) | |
| x = x * self.xscale | |
| pos_emb = self.position_encoding(size=x.size(1), offset=offset) | |
| return x, pos_emb | |
| def position_encoding(self, | |
| offset: Union[int, torch.Tensor], | |
| size: int) -> torch.Tensor: | |
| """ For getting encoding in a streaming fashion | |
| Attention!!!!! | |
| we apply dropout only once at the whole utterance level in a none | |
| streaming way, but will call this function several times with | |
| increasing input size in a streaming scenario, so the dropout will | |
| be applied several times. | |
| Args: | |
| offset (int or torch.tensor): start offset | |
| size (int): required size of position encoding | |
| Returns: | |
| torch.Tensor: Corresponding encoding | |
| """ | |
| # How to subscript a Union type: | |
| # https://github.com/pytorch/pytorch/issues/69434 | |
| if isinstance(offset, int): | |
| pos_emb = self.pe[ | |
| :, | |
| self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset, | |
| ] | |
| elif isinstance(offset, torch.Tensor): | |
| pos_emb = self.pe[ | |
| :, | |
| self.pe.size(1) // 2 - size - offset + 1: self.pe.size(1) // 2 + size + offset, | |
| ] | |
| return pos_emb | |
| class LinearNoSubsampling(torch.nn.Module): | |
| """Linear transform the input without subsampling | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| pos_enc_class (torch.nn.Module): Positional encoding class. | |
| """ | |
| def __init__(self, idim: int, odim: int, | |
| pos_enc_class: torch.nn.Module): | |
| super().__init__() | |
| self.out = torch.nn.Sequential( | |
| torch.nn.Linear(idim, odim), | |
| torch.nn.LayerNorm(odim, eps=1e-5), | |
| ) | |
| self.pos_enc = pos_enc_class | |
| self.right_context = 0 | |
| self.subsampling_rate = 1 | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| offset: Union[int, torch.Tensor] = 0 | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Input x. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, idim). | |
| x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
| Returns: | |
| torch.Tensor: linear input tensor (#batch, time', odim), | |
| where time' = time . | |
| torch.Tensor: linear input mask (#batch, 1, time'), | |
| where time' = time . | |
| """ | |
| x = self.out(x) | |
| x, pos_emb = self.pos_enc(x, offset) | |
| return x, pos_emb, x_mask | |
| def position_encoding(self, offset: Union[int, torch.Tensor], | |
| size: int) -> torch.Tensor: | |
| return self.pos_enc.position_encoding(offset, size) | |
| class Upsample1D(nn.Module): | |
| """A 1D upsampling layer with an optional convolution. | |
| Parameters: | |
| channels (`int`): | |
| number of channels in the inputs and outputs. | |
| use_conv (`bool`, default `False`): | |
| option to use a convolution. | |
| use_conv_transpose (`bool`, default `False`): | |
| option to use a convolution transpose. | |
| out_channels (`int`, optional): | |
| number of output channels. Defaults to `channels`. | |
| """ | |
| def __init__(self, channels: int, out_channels: int, stride: int = 2): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels | |
| self.stride = stride | |
| # In this mode, first repeat interpolate, than conv with stride=1 | |
| self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0) | |
| def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
| outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest") | |
| outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0) | |
| outputs = self.conv(outputs) | |
| return outputs, input_lengths * self.stride | |
| class PreLookaheadLayer(nn.Module): | |
| def __init__(self, channels: int, pre_lookahead_len: int = 1): | |
| super().__init__() | |
| self.channels = channels | |
| self.pre_lookahead_len = pre_lookahead_len | |
| self.conv1 = nn.Conv1d( | |
| channels, channels, | |
| kernel_size=pre_lookahead_len + 1, | |
| stride=1, padding=0, | |
| ) | |
| self.conv2 = nn.Conv1d( | |
| channels, channels, | |
| kernel_size=3, stride=1, padding=0, | |
| ) | |
| def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0)) -> torch.Tensor: | |
| """ | |
| inputs: (batch_size, seq_len, channels) | |
| """ | |
| outputs = inputs.transpose(1, 2).contiguous() | |
| context = context.transpose(1, 2).contiguous() | |
| # look ahead | |
| if context.size(2) == 0: | |
| outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0) | |
| else: | |
| assert self.training is False, 'you have passed context, make sure that you are running inference mode' | |
| assert context.size(2) == self.pre_lookahead_len | |
| outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0) | |
| outputs = F.leaky_relu(self.conv1(outputs)) | |
| # outputs | |
| outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0) | |
| outputs = self.conv2(outputs) | |
| outputs = outputs.transpose(1, 2).contiguous() | |
| # residual connection | |
| outputs = outputs + inputs | |
| return outputs | |
| class MultiHeadedAttention(nn.Module): | |
| """Multi-Head Attention layer. | |
| Args: | |
| n_head (int): The number of heads. | |
| n_feat (int): The number of features. | |
| dropout_rate (float): Dropout rate. | |
| key_bias (bool): Whether to use bias in key linear layer. | |
| """ | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| key_bias: bool = True): | |
| super().__init__() | |
| assert n_feat % n_head == 0 | |
| # We assume d_v always equals d_k | |
| self.d_k = n_feat // n_head | |
| self.h = n_head | |
| self.linear_q = nn.Linear(n_feat, n_feat) | |
| self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias) | |
| self.linear_v = nn.Linear(n_feat, n_feat) | |
| self.linear_out = nn.Linear(n_feat, n_feat) | |
| self.dropout = nn.Dropout(p=dropout_rate) | |
| def forward_qkv( | |
| self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Transform query, key and value. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| Returns: | |
| torch.Tensor: Transformed query tensor, size | |
| (#batch, n_head, time1, d_k). | |
| torch.Tensor: Transformed key tensor, size | |
| (#batch, n_head, time2, d_k). | |
| torch.Tensor: Transformed value tensor, size | |
| (#batch, n_head, time2, d_k). | |
| """ | |
| n_batch = query.size(0) | |
| q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) | |
| k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) | |
| v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) | |
| q = q.transpose(1, 2) # (batch, head, time1, d_k) | |
| k = k.transpose(1, 2) # (batch, head, time2, d_k) | |
| v = v.transpose(1, 2) # (batch, head, time2, d_k) | |
| return q, k, v | |
| def forward_attention( | |
| self, | |
| value: torch.Tensor, | |
| scores: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) | |
| ) -> torch.Tensor: | |
| """Compute attention context vector. | |
| Args: | |
| value (torch.Tensor): Transformed value, size | |
| (#batch, n_head, time2, d_k). | |
| scores (torch.Tensor): Attention score, size | |
| (#batch, n_head, time1, time2). | |
| mask (torch.Tensor): Mask, size (#batch, 1, time2) or | |
| (#batch, time1, time2), (0, 0, 0) means fake mask. | |
| Returns: | |
| torch.Tensor: Transformed value (#batch, time1, d_model) | |
| weighted by the attention score (#batch, time1, time2). | |
| """ | |
| n_batch = value.size(0) | |
| # NOTE(xcsong): When will `if mask.size(2) > 0` be True? | |
| # 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the | |
| # 1st chunk to ease the onnx export.] | |
| # 2. pytorch training | |
| if mask.size(2) > 0: # time2 > 0 | |
| mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2) | |
| # For last chunk, time2 might be larger than scores.size(-1) | |
| mask = mask[:, :, :, :scores.size(-1)] # (batch, 1, *, time2) | |
| scores = scores.masked_fill(mask, -float('inf')) | |
| attn = torch.softmax(scores, dim=-1).masked_fill( | |
| mask, 0.0) # (batch, head, time1, time2) | |
| # NOTE(xcsong): When will `if mask.size(2) > 0` be False? | |
| # 1. onnx(16/-1, -1/-1, 16/0) | |
| # 2. jit (16/-1, -1/-1, 16/0, 16/4) | |
| else: | |
| attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2) | |
| p_attn = self.dropout(attn) | |
| x = torch.matmul(p_attn, value) # (batch, head, time1, d_k) | |
| x = (x.transpose(1, 2).contiguous().view(n_batch, -1, | |
| self.h * self.d_k) | |
| ) # (batch, time1, d_model) | |
| return self.linear_out(x) # (batch, time1, d_model) | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute scaled dot product attention. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
| (#batch, time1, time2). | |
| 1.When applying cross attention between decoder and encoder, | |
| the batch padding mask for input is in (#batch, 1, T) shape. | |
| 2.When applying self attention of encoder, | |
| the mask is in (#batch, T, T) shape. | |
| 3.When applying self attention of decoder, | |
| the mask is in (#batch, L, L) shape. | |
| 4.If the different position in decoder see different block | |
| of the encoder, such as Mocha, the passed in mask could be | |
| in (#batch, L, T) shape. But there is no such case in current | |
| CosyVoice. | |
| cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time1, d_model). | |
| torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| """ | |
| q, k, v = self.forward_qkv(query, key, value) | |
| # NOTE(xcsong): | |
| # when export onnx model, for 1st chunk, we feed | |
| # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) | |
| # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). | |
| # In all modes, `if cache.size(0) > 0` will alwayse be `True` | |
| # and we will always do splitting and | |
| # concatnation(this will simplify onnx export). Note that | |
| # it's OK to concat & split zero-shaped tensors(see code below). | |
| # when export jit model, for 1st chunk, we always feed | |
| # cache(0, 0, 0, 0) since jit supports dynamic if-branch. | |
| # >>> a = torch.ones((1, 2, 0, 4)) | |
| # >>> b = torch.ones((1, 2, 3, 4)) | |
| # >>> c = torch.cat((a, b), dim=2) | |
| # >>> torch.equal(b, c) # True | |
| # >>> d = torch.split(a, 2, dim=-1) | |
| # >>> torch.equal(d[0], d[1]) # True | |
| if cache.size(0) > 0: | |
| key_cache, value_cache = torch.split(cache, | |
| cache.size(-1) // 2, | |
| dim=-1) | |
| k = torch.cat([key_cache, k], dim=2) | |
| v = torch.cat([value_cache, v], dim=2) | |
| # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
| # non-trivial to calculate `next_cache_start` here. | |
| new_cache = torch.cat((k, v), dim=-1) | |
| scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
| return self.forward_attention(v, scores, mask), new_cache | |
| class RelPositionMultiHeadedAttention(MultiHeadedAttention): | |
| """Multi-Head Attention layer with relative position encoding. | |
| Paper: https://arxiv.org/abs/1901.02860 | |
| Args: | |
| n_head (int): The number of heads. | |
| n_feat (int): The number of features. | |
| dropout_rate (float): Dropout rate. | |
| key_bias (bool): Whether to use bias in key linear layer. | |
| """ | |
| def __init__(self, | |
| n_head: int, | |
| n_feat: int, | |
| dropout_rate: float, | |
| key_bias: bool = True): | |
| super().__init__(n_head, n_feat, dropout_rate, key_bias) | |
| # linear transformation for positional encoding | |
| self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) | |
| # these two learnable bias are used in matrix c and matrix d | |
| # as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
| self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
| self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
| torch.nn.init.xavier_uniform_(self.pos_bias_u) | |
| torch.nn.init.xavier_uniform_(self.pos_bias_v) | |
| def rel_shift(self, x: torch.Tensor) -> torch.Tensor: | |
| """Compute relative positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). | |
| time1 means the length of query vector. | |
| Returns: | |
| torch.Tensor: Output tensor. | |
| """ | |
| zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), | |
| device=x.device, | |
| dtype=x.dtype) | |
| x_padded = torch.cat([zero_pad, x], dim=-1) | |
| x_padded = x_padded.view(x.size()[0], | |
| x.size()[1], | |
| x.size(3) + 1, x.size(2)) | |
| x = x_padded[:, :, 1:].view_as(x)[ | |
| :, :, :, : x.size(-1) // 2 + 1 | |
| ] # only keep the positions from 0 to time2 | |
| return x | |
| def forward( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| pos_emb: torch.Tensor = torch.empty(0), | |
| cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute 'Scaled Dot Product Attention' with rel. positional encoding. | |
| Args: | |
| query (torch.Tensor): Query tensor (#batch, time1, size). | |
| key (torch.Tensor): Key tensor (#batch, time2, size). | |
| value (torch.Tensor): Value tensor (#batch, time2, size). | |
| mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
| (#batch, time1, time2), (0, 0, 0) means fake mask. | |
| pos_emb (torch.Tensor): Positional embedding tensor | |
| (#batch, time2, size). | |
| cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time1, d_model). | |
| torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
| where `cache_t == chunk_size * num_decoding_left_chunks` | |
| and `head * d_k == size` | |
| """ | |
| q, k, v = self.forward_qkv(query, key, value) | |
| q = q.transpose(1, 2) # (batch, time1, head, d_k) | |
| # NOTE(xcsong): | |
| # when export onnx model, for 1st chunk, we feed | |
| # cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) | |
| # or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). | |
| # In all modes, `if cache.size(0) > 0` will alwayse be `True` | |
| # and we will always do splitting and | |
| # concatnation(this will simplify onnx export). Note that | |
| # it's OK to concat & split zero-shaped tensors(see code below). | |
| # when export jit model, for 1st chunk, we always feed | |
| # cache(0, 0, 0, 0) since jit supports dynamic if-branch. | |
| # >>> a = torch.ones((1, 2, 0, 4)) | |
| # >>> b = torch.ones((1, 2, 3, 4)) | |
| # >>> c = torch.cat((a, b), dim=2) | |
| # >>> torch.equal(b, c) # True | |
| # >>> d = torch.split(a, 2, dim=-1) | |
| # >>> torch.equal(d[0], d[1]) # True | |
| if cache.size(0) > 0: | |
| key_cache, value_cache = torch.split(cache, | |
| cache.size(-1) // 2, | |
| dim=-1) | |
| k = torch.cat([key_cache, k], dim=2) | |
| v = torch.cat([value_cache, v], dim=2) | |
| # NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
| # non-trivial to calculate `next_cache_start` here. | |
| new_cache = torch.cat((k, v), dim=-1) | |
| n_batch_pos = pos_emb.size(0) | |
| p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) | |
| p = p.transpose(1, 2) # (batch, head, time1, d_k) | |
| # (batch, head, time1, d_k) | |
| q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) | |
| # (batch, head, time1, d_k) | |
| q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) | |
| # compute attention score | |
| # first compute matrix a and matrix c | |
| # as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
| # (batch, head, time1, time2) | |
| matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) | |
| # compute matrix b and matrix d | |
| # (batch, head, time1, time2) | |
| matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) | |
| # NOTE(Xiang Lyu): Keep rel_shift since espnet rel_pos_emb is used | |
| if matrix_ac.shape != matrix_bd.shape: | |
| matrix_bd = self.rel_shift(matrix_bd) | |
| scores = (matrix_ac + matrix_bd) / math.sqrt( | |
| self.d_k) # (batch, head, time1, time2) | |
| return self.forward_attention(v, scores, mask), new_cache | |
| class PositionwiseFeedForward(torch.nn.Module): | |
| """Positionwise feed forward layer. | |
| FeedForward are appied on each position of the sequence. | |
| The output dim is same with the input dim. | |
| Args: | |
| idim (int): Input dimenstion. | |
| hidden_units (int): The number of hidden units. | |
| dropout_rate (float): Dropout rate. | |
| activation (torch.nn.Module): Activation function | |
| """ | |
| def __init__( | |
| self, | |
| idim: int, | |
| hidden_units: int, | |
| dropout_rate: float, | |
| activation: torch.nn.Module = torch.nn.ReLU(), | |
| ): | |
| super(PositionwiseFeedForward, self).__init__() | |
| self.w_1 = torch.nn.Linear(idim, hidden_units) | |
| self.activation = activation | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| self.w_2 = torch.nn.Linear(hidden_units, idim) | |
| def forward(self, xs: torch.Tensor) -> torch.Tensor: | |
| """Forward function. | |
| Args: | |
| xs: input tensor (B, L, D) | |
| Returns: | |
| output tensor, (B, L, D) | |
| """ | |
| return self.w_2(self.dropout(self.activation(self.w_1(xs)))) | |
| class ConformerEncoderLayer(nn.Module): | |
| """Encoder layer module. | |
| Args: | |
| size (int): Input dimension. | |
| self_attn (torch.nn.Module): Self-attention module instance. | |
| `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` | |
| instance can be used as the argument. | |
| feed_forward (torch.nn.Module): Feed-forward module instance. | |
| `PositionwiseFeedForward` instance can be used as the argument. | |
| feed_forward_macaron (torch.nn.Module): Additional feed-forward module | |
| instance. | |
| `PositionwiseFeedForward` instance can be used as the argument. | |
| conv_module (torch.nn.Module): Convolution module instance. | |
| `ConvlutionModule` instance can be used as the argument. | |
| dropout_rate (float): Dropout rate. | |
| normalize_before (bool): | |
| True: use layer_norm before each sub-block. | |
| False: use layer_norm after each sub-block. | |
| """ | |
| def __init__( | |
| self, | |
| size: int, | |
| self_attn: torch.nn.Module, | |
| feed_forward: Optional[nn.Module] = None, | |
| feed_forward_macaron: Optional[nn.Module] = None, | |
| conv_module: Optional[nn.Module] = None, | |
| dropout_rate: float = 0.0, | |
| normalize_before: bool = True, | |
| ): | |
| super().__init__() | |
| self.self_attn = self_attn | |
| self.feed_forward = feed_forward | |
| self.feed_forward_macaron = feed_forward_macaron | |
| self.conv_module = conv_module | |
| self.norm_ff = nn.LayerNorm(size, eps=1e-12) # for the FNN module | |
| self.norm_mha = nn.LayerNorm(size, eps=1e-12) # for the MHA module | |
| if feed_forward_macaron is not None: | |
| self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12) | |
| self.ff_scale = 0.5 | |
| else: | |
| self.ff_scale = 1.0 | |
| if self.conv_module is not None: | |
| self.norm_conv = nn.LayerNorm(size, eps=1e-12) # for the CNN module | |
| self.norm_final = nn.LayerNorm( | |
| size, eps=1e-12) # for the final output of the block | |
| self.dropout = nn.Dropout(dropout_rate) | |
| self.size = size | |
| self.normalize_before = normalize_before | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| mask: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
| att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
| cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
| ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """Compute encoded features. | |
| Args: | |
| x (torch.Tensor): (#batch, time, size) | |
| mask (torch.Tensor): Mask tensor for the input (#batch, time,time), | |
| (0, 0, 0) means fake mask. | |
| pos_emb (torch.Tensor): positional encoding, must not be None | |
| for ConformerEncoderLayer. | |
| mask_pad (torch.Tensor): batch padding mask used for conv module. | |
| (#batch, 1,time), (0, 0, 0) means fake mask. | |
| att_cache (torch.Tensor): Cache tensor of the KEY & VALUE | |
| (#batch=1, head, cache_t1, d_k * 2), head * d_k == size. | |
| cnn_cache (torch.Tensor): Convolution cache in conformer layer | |
| (#batch=1, size, cache_t2) | |
| Returns: | |
| torch.Tensor: Output tensor (#batch, time, size). | |
| torch.Tensor: Mask tensor (#batch, time, time). | |
| torch.Tensor: att_cache tensor, | |
| (#batch=1, head, cache_t1 + time, d_k * 2). | |
| torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). | |
| """ | |
| # whether to use macaron style | |
| if self.feed_forward_macaron is not None: | |
| residual = x | |
| if self.normalize_before: | |
| x = self.norm_ff_macaron(x) | |
| x = residual + self.ff_scale * self.dropout( | |
| self.feed_forward_macaron(x)) | |
| if not self.normalize_before: | |
| x = self.norm_ff_macaron(x) | |
| # multi-headed self-attention module | |
| residual = x | |
| if self.normalize_before: | |
| x = self.norm_mha(x) | |
| x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, | |
| att_cache) | |
| x = residual + self.dropout(x_att) | |
| if not self.normalize_before: | |
| x = self.norm_mha(x) | |
| # convolution module | |
| # Fake new cnn cache here, and then change it in conv_module | |
| new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
| if self.conv_module is not None: | |
| residual = x | |
| if self.normalize_before: | |
| x = self.norm_conv(x) | |
| x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) | |
| x = residual + self.dropout(x) | |
| if not self.normalize_before: | |
| x = self.norm_conv(x) | |
| # feed forward module | |
| residual = x | |
| if self.normalize_before: | |
| x = self.norm_ff(x) | |
| x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) | |
| if not self.normalize_before: | |
| x = self.norm_ff(x) | |
| if self.conv_module is not None: | |
| x = self.norm_final(x) | |
| return x, mask, new_att_cache, new_cnn_cache | |
| class UpsampleConformerEncoder(torch.nn.Module): | |
| """ | |
| Args: | |
| input_size (int): input dim | |
| output_size (int): dimension of attention | |
| attention_heads (int): the number of heads of multi head attention | |
| linear_units (int): the hidden units number of position-wise feed | |
| forward | |
| num_blocks (int): the number of decoder blocks | |
| static_chunk_size (int): chunk size for static chunk training and | |
| decoding | |
| use_dynamic_chunk (bool): whether use dynamic chunk size for | |
| training or not, You can only use fixed chunk(chunk_size > 0) | |
| or dyanmic chunk size(use_dynamic_chunk = True) | |
| use_dynamic_left_chunk (bool): whether use dynamic left chunk in | |
| dynamic chunk training | |
| key_bias: whether use bias in attention.linear_k, False for whisper models. | |
| """ | |
| def __init__( | |
| self, | |
| input_size: int = 512, | |
| output_size: int = 512, | |
| attention_heads: int = 8, | |
| linear_units: int = 2048, | |
| num_blocks: int = 6, | |
| static_chunk_size: int = 25, | |
| use_dynamic_chunk: bool = False, | |
| use_dynamic_left_chunk: bool = False, | |
| key_bias: bool = True, | |
| ): | |
| super().__init__() | |
| self._output_size = output_size | |
| self.embed = LinearNoSubsampling( | |
| input_size, output_size, | |
| EspnetRelPositionalEncoding(output_size), | |
| ) | |
| self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) | |
| self.static_chunk_size = static_chunk_size | |
| self.use_dynamic_chunk = use_dynamic_chunk | |
| self.use_dynamic_left_chunk = use_dynamic_left_chunk | |
| activation = torch.nn.SiLU() | |
| # self-attention module definition | |
| encoder_selfattn_layer_args = ( | |
| attention_heads, | |
| output_size, | |
| 0.0, | |
| key_bias, | |
| ) | |
| # feed-forward module definition | |
| positionwise_layer_args = ( | |
| output_size, | |
| linear_units, | |
| 0.0, | |
| activation, | |
| ) | |
| # convolution module definition | |
| self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3) | |
| self.encoders = torch.nn.ModuleList([ | |
| ConformerEncoderLayer( | |
| output_size, | |
| RelPositionMultiHeadedAttention(*encoder_selfattn_layer_args), | |
| PositionwiseFeedForward(*positionwise_layer_args), | |
| ) for _ in range(num_blocks) | |
| ]) | |
| self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2) | |
| self.up_embed = LinearNoSubsampling( | |
| input_size, output_size, | |
| EspnetRelPositionalEncoding(output_size), | |
| ) | |
| self.up_encoders = torch.nn.ModuleList([ | |
| ConformerEncoderLayer( | |
| output_size, | |
| RelPositionMultiHeadedAttention(*encoder_selfattn_layer_args), | |
| PositionwiseFeedForward(*positionwise_layer_args), | |
| ) for _ in range(4) | |
| ]) | |
| def output_size(self) -> int: | |
| return self._output_size | |
| def forward( | |
| self, | |
| xs: torch.Tensor, | |
| xs_lens: torch.Tensor, | |
| context: torch.Tensor = torch.zeros(0, 0, 0), | |
| decoding_chunk_size: int = 0, | |
| num_decoding_left_chunks: int = -1, | |
| streaming: bool = False, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Embed positions in tensor. | |
| Args: | |
| xs: padded input tensor (B, T, D) | |
| xs_lens: input length (B) | |
| decoding_chunk_size: decoding chunk size for dynamic chunk | |
| 0: default for training, use random dynamic chunk. | |
| <0: for decoding, use full chunk. | |
| >0: for decoding, use fixed chunk size as set. | |
| num_decoding_left_chunks: number of left chunks, this is for decoding, | |
| the chunk size is decoding_chunk_size. | |
| >=0: use num_decoding_left_chunks | |
| <0: use all left chunks | |
| Returns: | |
| encoder output tensor xs, and subsampled masks | |
| xs: padded output tensor (B, T' ~= T/subsample_rate, D) | |
| masks: torch.Tensor batch padding mask after subsample | |
| (B, 1, T' ~= T/subsample_rate) | |
| NOTE(xcsong): | |
| We pass the `__call__` method of the modules instead of `forward` to the | |
| checkpointing API because `__call__` attaches all the hooks of the module. | |
| https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 | |
| """ | |
| T = xs.size(1) | |
| masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
| xs, pos_emb, masks = self.embed(xs, masks) | |
| if context.size(1) != 0: | |
| assert self.training is False, 'you have passed context, make sure that you are running inference mode' | |
| context_masks = torch.ones(1, 1, context.size(1)).to(masks) | |
| context, _, _ = self.embed(context, context_masks, offset=xs.size(1)) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1) | |
| # lookahead + conformer encoder | |
| xs = self.pre_lookahead_layer(xs, context=context) | |
| xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) | |
| # upsample + conformer encoder | |
| xs = xs.transpose(1, 2).contiguous() | |
| xs, xs_lens = self.up_layer(xs, xs_lens) | |
| xs = xs.transpose(1, 2).contiguous() | |
| T = xs.size(1) | |
| masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T) | |
| xs, pos_emb, masks = self.up_embed(xs, masks) | |
| mask_pad = masks # (B, 1, T/subsample_rate) | |
| chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size * self.up_layer.stride if streaming is True else 0, -1) | |
| xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad) | |
| xs = self.after_norm(xs) | |
| # Here we assume the mask is not changed in encoder layers, so just | |
| # return the masks before encoder layers, and the masks will be used | |
| # for cross attention with decoder later | |
| return xs, masks | |
| def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor) -> torch.Tensor: | |
| for layer in self.encoders: | |
| xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
| return xs | |
| def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, | |
| pos_emb: torch.Tensor, | |
| mask_pad: torch.Tensor) -> torch.Tensor: | |
| for layer in self.up_encoders: | |
| xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) | |
| return xs | |