Spaces:
Running
A newer version of the Gradio SDK is available:
5.49.1
title: VoxFactory
emoji: π¬οΈ
colorFrom: gray
colorTo: red
sdk: gradio
app_file: interface.py
pinned: false
license: mit
short_description: FinetuneASR Voxtral
Finetune Voxtral for ASR with Transformers π€
This repository fine-tunes the Voxtral speech model for automatic speech recognition (ASR) using Hugging Face transformers and datasets. It includes:
- Full and LoRA training scripts
- A Gradio interface to collect audio, build a JSONL dataset, fine-tune, push to Hub, and deploy a demo Space
- Utilities to push trained models and datasets to the Hugging Face Hub
Installation
1) Clone the repository
git clone https://github.com/Deep-unlearning/Finetune-Voxtral-ASR.git
cd Finetune-Voxtral-ASR
2) Create environment and install deps
Choose your package manager.
π¦ Using UV (recommended)
uv venv .venv --python 3.10 && source .venv/bin/activate
uv pip install -r requirements.txt
π Using pip
python -m venv .venv --python 3.10 && source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
Quick start options
- Train from CLI: run
scripts/train.py(full) orscripts/train_lora.py(LoRA) - Use the Gradio interface:
python interface.pyto record/upload audio, create dataset JSONL, train, push, and deploy a demo Space
Dataset preparation
Training scripts accept either a local JSONL or a small Hub dataset slice.
- Local JSONL format expected by collators and push utilities:
{
"audio_path": "/abs/or/relative/path.wav",
"text": "reference transcription"
}
When loading from the Hub (default fallback):
hf-audio/esb-datasets-test-only-sortedconfigvoxpopuliis used and cast toAudio(sampling_rate=16000).The custom
VoxtralDataCollatorconstructs inputs as: prompt from audio viaVoxtralProcessor.apply_transcription_request(...)followed by label tokens. Loss is masked over the prompt; only transcription tokens contribute to loss.
Minimum columns after loading/mapping:
audiocast toAudio(sampling_rate=16000)(Hub) or created fromaudio_path(local JSONL)texttranscription string
Full fine-tuning (scripts/train.py)
Run with either a local JSONL or the default tiny Hub slice:
python scripts/train.py \
--model-checkpoint mistralai/Voxtral-Mini-3B-2507 \
--dataset-jsonl datasets/voxtral_user/data.jsonl \
--train-count 100 --eval-count 50 \
--batch-size 2 --grad-accum 4 --learning-rate 5e-5 --epochs 3 \
--output-dir ./voxtral-finetuned
Key args:
--dataset-jsonl: local JSONL with{audio_path, text}. If omitted, useshf-audio/esb-datasets-test-only-sorted/voxpopulitest slice--dataset-name,--dataset-config: override default Hub dataset--train-count,--eval-count: small sample sizes for quick runs--trackio-space: HF Space ID for Trackio logging; if omitted andHF_TOKENis set, a space name is auto-derived--push-dataset,--dataset-repo: optionally push your local JSONL dataset to the Hub after training
Environment for logging and Hub auth:
HF_TOKENorHUGGINGFACE_HUB_TOKEN: enables Trackio space naming and Hub uploads
Outputs: model and processor saved to --output-dir.
LoRA fine-tuning (scripts/train_lora.py)
python scripts/train_lora.py \
--model-checkpoint mistralai/Voxtral-Mini-3B-2507 \
--dataset-jsonl datasets/voxtral_user/data.jsonl \
--train-count 100 --eval-count 50 \
--batch-size 2 --grad-accum 4 --learning-rate 5e-5 --epochs 3 \
--lora-r 8 --lora-alpha 32 --lora-dropout 0.0 --freeze-audio-tower \
--output-dir ./voxtral-finetuned-lora
Additional LoRA args:
--lora-r,--lora-alpha,--lora-dropout--freeze-audio-tower: optionally freeze audio encoder params
End-to-end via Gradio interface (interface.py)
Start the UI:
python interface.py
What it does:
- Record microphone audio or upload files + transcripts
- Saves datasets to
datasets/voxtral_user/asdata.jsonlorrecorded_data.jsonl - Kicks off full or LoRA training with streamed logs
- Optionally pushes dataset and model to the Hub
- Optionally deploys a Voxtral ASR demo Space
Environment variables used by the interface:
HF_WRITE_TOKENorHF_TOKENorHUGGINGFACE_HUB_TOKEN: write/read token for Hub actionsHF_READ_TOKEN: optional read tokenHF_USERNAME: fallback username if it cannot be derived from the token
Notes:
- The interface uses a multilingual phrase source (CohereLabs/AYA via token; otherwise localized fallbacks)
- Output models are placed under
outputs/<username_repo>/
Push models and datasets to Hugging Face (scripts/push_to_huggingface.py)
Push a trained model directory (full or LoRA):
python scripts/push_to_huggingface.py model ./voxtral-finetuned my-voxtral-asr \
--author-name "Your Name" \
--model-description "Fine-tuned Voxtral ASR" \
--model-name mistralai/Voxtral-Mini-3B-2507
Push a dataset JSONL and its audio files:
python scripts/push_to_huggingface.py dataset datasets/voxtral_user/data.jsonl my-voxtral-dataset
Tips:
- If you pass bare repo names (no
username/), the tool will resolve your username from the token orHF_USERNAME. - For LoRA outputs, the pusher detects adapter files; for full models it detects
config.json+ weight files and uploads accordingly.
Deploy a demo Space (scripts/deploy_demo_space.py)
Deploy a Voxtral demo Space for a pushed model:
python scripts/deploy_demo_space.py \
--hf-token $HF_TOKEN \
--hf-username your-hf-username \
--model-id your-hf-username/your-model-repo \
--demo-type voxtral \
--space-name my-voxtral-demo
What it does:
- Creates the Space (or use
--skip-creationto only upload) - Uploads template files from
templates/spaces/demo_voxtral/ - Sets space variables and secrets (e.g.,
HF_TOKEN,HF_MODEL_ID) via API - Waits for the Space to build and tests accessibility
The Space app loads either a full model or a base+LoRA adapter with peft, and uses AutoProcessor to build Voxtral transcription requests.
GPU and versions
- Torch 2.8.0 + torchaudio 2.8.0 and
torchcodec==0.7are specified; CUDA-capable GPU is recommended for training - The code prefers
bfloat16on CUDA,float32on CPU
Troubleshooting
- No token found:
- Set
HF_TOKEN(orHUGGINGFACE_HUB_TOKEN) in your environment for Hub operations and Trackio naming
- Set
- Invalid token or username resolution failed:
- Provide fully-qualified repo IDs like
username/repoor setHF_USERNAME
- Provide fully-qualified repo IDs like
- Demo Space rate limits / propagation delays:
- The deploy script retries uploads and may need extra time for the Space to build
- Collator errors:
- Ensure your JSONL rows include valid
audio_pathfiles andtextstrings
- Ensure your JSONL rows include valid
- Windows shell hints:
- Use
set HF_TOKEN=your_tokenin CMD/PowerShell before running scripts
- Use
License
MIT