l-operator-demo / app.py
Joseph Pollack
bumpt transformers and fix examples
bb7bd59 unverified
raw
history blame
15.8 kB
import gradio as gr
import torch
from PIL import Image
import json
import os
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict, Any
import logging
import spaces
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configuration
MODEL_ID = "Tonic/l-android-control"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Get Hugging Face token from environment variable (Spaces secrets)
import os
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
logger.warning("HF_TOKEN not found in environment variables. Model access may be restricted.")
class LOperatorDemo:
def __init__(self):
self.model = None
self.processor = None
self.is_loaded = False
def load_model(self):
"""Load the L-Operator model and processor"""
try:
logger.info(f"Loading model {MODEL_ID} on device {DEVICE}")
# Check if token is available
if not HF_TOKEN:
return "❌ HF_TOKEN not found. Please set HF_TOKEN in Spaces secrets."
try:
# Try loading with standard approach
self.processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True,
token=HF_TOKEN
)
self.model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
trust_remote_code=True,
device_map="auto" if DEVICE == "cuda" else None,
token=HF_TOKEN
)
except Exception as e:
logger.warning(f"Standard loading failed: {str(e)}")
logger.info("Attempting fallback loading approach...")
# Fallback: try loading with explicit model type
self.processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True,
token=HF_TOKEN,
revision="main"
)
self.model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
trust_remote_code=True,
device_map="auto" if DEVICE == "cuda" else None,
token=HF_TOKEN,
revision="main",
ignore_mismatched_sizes=True
)
if DEVICE == "cpu":
self.model = self.model.to(DEVICE)
self.is_loaded = True
logger.info("Model loaded successfully with token authentication")
return "βœ… Model loaded successfully with token authentication!"
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return f"❌ Error loading model: {str(e)} - This may be a custom model requiring special handling"
@spaces.GPU(duration=120) # 2 minutes for action generation
def generate_action(self, image: Image.Image, goal: str, instruction: str) -> str:
"""Generate action based on image and text inputs"""
if not self.is_loaded:
return "❌ Model not loaded. Please load the model first."
try:
# Convert image to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
# Build conversation
conversation = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful multimodal assistant by Liquid AI."}
]
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": f"Goal: {goal}\nStep: {instruction}\nRespond with a JSON action containing relevant keys (e.g., action_type, x, y, text, app_name, direction)."}
]
}
]
# Process inputs
inputs = self.processor.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(self.model.device)
# Generate response
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9
)
response = self.processor.tokenizer.decode(
outputs[0][inputs.shape[1]:],
skip_special_tokens=True
)
# Try to parse as JSON for better formatting
try:
parsed_response = json.loads(response)
return json.dumps(parsed_response, indent=2)
except:
return response
except Exception as e:
logger.error(f"Error generating action: {str(e)}")
return f"❌ Error generating action: {str(e)}"
@spaces.GPU(duration=90) # 1.5 minutes for chat responses
def chat_with_model(self, message: str, history: List[Dict[str, str]], image: Image.Image = None) -> List[Dict[str, str]]:
"""Chat interface function for Gradio"""
if not self.is_loaded:
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "❌ Model not loaded. Please load the model first."}]
if image is None:
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "❌ Please upload an Android screenshot image."}]
try:
# Extract goal and instruction from message
if "Goal:" in message and "Step:" in message:
# Parse structured input
lines = message.split('\n')
goal = ""
instruction = ""
for line in lines:
if line.startswith("Goal:"):
goal = line.replace("Goal:", "").strip()
elif line.startswith("Step:"):
instruction = line.replace("Step:", "").strip()
if not goal or not instruction:
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "❌ Please provide both Goal and Step in your message."}]
else:
# Treat as general instruction
goal = "Complete the requested action"
instruction = message
# Generate action
response = self.generate_action(image, goal, instruction)
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": response}]
except Exception as e:
logger.error(f"Error in chat: {str(e)}")
return history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"❌ Error: {str(e)}"}]
# Initialize demo
demo_instance = LOperatorDemo()
# Auto-load the model on startup
def auto_load_model():
"""Auto-load the model when the application starts"""
try:
logger.info("Auto-loading L-Operator model on startup...")
result = demo_instance.load_model()
logger.info(f"Auto-load result: {result}")
return result
except Exception as e:
logger.error(f"Error auto-loading model: {str(e)}")
return f"❌ Error auto-loading model: {str(e)}"
# Load model automatically (this happens during import)
print("πŸš€ Auto-loading L-Operator model on startup...")
auto_load_model()
print("βœ… Model loading completed!")
# Load example episodes
def load_example_episodes():
"""Load example episodes from the extracted data"""
examples = []
try:
# Load episode 13
with open("extracted_episodes_duckdb/episode_13/metadata.json", "r") as f:
episode_13 = json.load(f)
# Load episode 53
with open("extracted_episodes_duckdb/episode_53/metadata.json", "r") as f:
episode_53 = json.load(f)
# Load episode 73
with open("extracted_episodes_duckdb/episode_73/metadata.json", "r") as f:
episode_73 = json.load(f)
# Create examples with simple identifiers
examples = [
[
"extracted_episodes_duckdb/episode_13/screenshots/screenshot_1.png",
"Episode 13: Navigate app interface"
],
[
"extracted_episodes_duckdb/episode_53/screenshots/screenshot_1.png",
"Episode 53: App interaction example"
],
[
"extracted_episodes_duckdb/episode_73/screenshots/screenshot_1.png",
"Episode 73: Device control task"
]
]
except Exception as e:
logger.error(f"Error loading examples: {str(e)}")
examples = []
return examples
# Create Gradio interface
def create_demo():
"""Create the Gradio demo interface"""
with gr.Blocks(
title="L-Operator: Android Device Control Demo",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.chat-container {
height: 600px;
}
"""
) as demo:
gr.Markdown("""
# πŸ€– L-Operator: Android Device Control Demo
**Lightweight Multimodal Android Device Control Agent**
This demo showcases the L-Operator model, a fine-tuned multimodal AI agent based on LiquidAI's LFM2-VL-1.6B model,
optimized for Android device control through visual understanding and action generation.
## πŸš€ How to Use
1. **Model Loading**: The L-Operator model loads automatically on startup
2. **Upload Screenshot**: Upload an Android device screenshot
3. **Provide Instructions**: Enter your goal and step instructions
4. **Get Actions**: The model will generate JSON actions for Android device control
## πŸ“‹ Expected Output Format
The model generates JSON actions in the following format:
```json
{
"action_type": "tap",
"x": 540,
"y": 1200,
"text": "Settings",
"app_name": "com.android.settings",
"confidence": 0.92
}
```
---
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### πŸ€– Model Status")
model_status = gr.Textbox(
label="L-Operator Model",
value="πŸ”„ Loading model on startup...",
interactive=False
)
gr.Markdown("### πŸ“± Input")
image_input = gr.Image(
label="Android Screenshot",
type="pil",
height=400,
sources=["upload"]
)
gr.Markdown("### πŸ“ Instructions")
goal_input = gr.Textbox(
label="Goal",
placeholder="e.g., Open the Settings app and navigate to Display settings",
lines=2
)
step_input = gr.Textbox(
label="Step Instruction",
placeholder="e.g., Tap on the Settings app icon on the home screen",
lines=2
)
generate_btn = gr.Button("🎯 Generate Action", variant="secondary")
with gr.Column(scale=2):
gr.Markdown("### πŸ’¬ Chat Interface")
chat_interface = gr.ChatInterface(
fn=demo_instance.chat_with_model,
additional_inputs=[image_input],
title="L-Operator Chat",
description="Chat with L-Operator using screenshots and text instructions",
examples=load_example_episodes(),
type="messages"
)
gr.Markdown("### 🎯 Action Output")
action_output = gr.JSON(
label="Generated Action",
value={},
height=200
)
# Event handlers
def on_generate_action(image, goal, step):
if not image:
return {"error": "Please upload an image"}
if not goal or not step:
return {"error": "Please provide both goal and step"}
response = demo_instance.generate_action(image, goal, step)
try:
# Try to parse as JSON
parsed = json.loads(response)
return parsed
except:
return {"raw_response": response}
# Update model status on page load
def update_model_status():
if demo_instance.is_loaded:
return "βœ… L-Operator model loaded and ready!"
else:
return "❌ Model failed to load. Please check logs."
generate_btn.click(
fn=on_generate_action,
inputs=[image_input, goal_input, step_input],
outputs=action_output
)
# Update model status on page load
demo.load(
fn=update_model_status,
outputs=model_status
)
# Update chat interface when image changes
def update_chat_image(image):
return image
image_input.change(
fn=update_chat_image,
inputs=[image_input],
outputs=[chat_interface.chatbot]
)
gr.Markdown("""
---
## πŸ“Š Model Details
| Property | Value |
|----------|-------|
| **Base Model** | LiquidAI/LFM2-VL-1.6B |
| **Architecture** | LFM2-VL (1.6B parameters) |
| **Fine-tuning** | LoRA (Low-Rank Adaptation) |
| **Training Data** | Android control episodes with screenshots and actions |
## 🎯 Use Cases
- **Mobile App Testing**: Automated UI testing for Android applications
- **Accessibility Applications**: Voice-controlled device navigation
- **Remote Support**: Remote device troubleshooting
- **Development Workflows**: UI/UX testing automation
---
**Made with ❀️ by Tonic** | [Model on Hugging Face](https://huggingface.co/Tonic/l-android-control)
""")
return demo
# Create and launch the demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
show_error=True,
ssr_mode=False
)