Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import json | |
| import uuid | |
| from PIL import Image | |
| from bs4 import BeautifulSoup | |
| import requests | |
| import random | |
| from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer | |
| from threading import Thread | |
| import re | |
| import time | |
| import torch | |
| # Initialize model and processor | |
| model_id = "llava-hf/llava-interleave-qwen-0.5b-hf" | |
| processor = LlavaProcessor.from_pretrained(model_id) | |
| model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cpu") | |
| # Initialize inference clients for different models | |
| client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") | |
| client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO") | |
| client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") | |
| client_yi = InferenceClient("01-ai/Yi-1.5-34B-Chat") | |
| def search(query): | |
| """Performs a Google search and extracts text from the top results.""" | |
| session = requests.Session() | |
| response = session.get(f"https://www.google.com/search?q={query}", | |
| headers={"User-Agent": "Mozilla/5.0"}) | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| results = [] | |
| for result in soup.find_all("div", class_="BNeawe vvjwJb AP7Wnd"): | |
| text = result.get_text() | |
| link = result.find_parent("a")["href"] | |
| results.append(f"{text}: {link}") | |
| return "\n".join(results[:3]) | |
| def llava(inputs, history): | |
| """Processes an image and text input with Llava.""" | |
| image = Image.open(inputs["files"][0]).convert("RGB") | |
| prompt = f"<|im_start|>user <image>\n{inputs['text']}<|im_end|>" | |
| processed = processor(prompt, image, return_tensors="pt").to("cpu") | |
| return processed | |
| def respond(message, history): | |
| """Main response function for the chatbot.""" | |
| if "files" in message and message["files"]: | |
| inputs = llava(message, history) | |
| streamer = TextIteratorStreamer(skip_prompt=True, skip_special_tokens=True) | |
| thread = Thread(target=model.generate, kwargs=dict(inputs=inputs, max_new_tokens=512, streamer=streamer)) | |
| thread.start() | |
| buffer = "" | |
| for new_text in streamer: | |
| buffer += new_text | |
| yield buffer | |
| else: | |
| prompt = [{"role": "user", "content": msg[0]} for msg in history] | |
| prompt.append({"role": "user", "content": message["text"]}) | |
| response = client_gemma.chat_completion(prompt, max_tokens=200) | |
| yield response["choices"][0]["message"]["content"] | |
| def generate_image(prompt): | |
| """Generates an image using the external model.""" | |
| client = InferenceClient("KingNish/Image-Gen-Pro") | |
| return client.predict("Image Generation", None, prompt, api_name="/image_gen_pro") | |
| # Set up Gradio interface | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot() | |
| with gr.Row(): | |
| with gr.Column(): | |
| text_input = gr.Textbox(placeholder="Enter your message...") | |
| file_input = gr.File(label="Upload an image") | |
| with gr.Column(): | |
| output = gr.Image(label="Generated Image") | |
| with gr.Row(): | |
| search_button = gr.Button("Search Google") | |
| image_button = gr.Button("Generate Image") | |
| examples = [ | |
| {"text": "Who are you?"}, | |
| {"text": "Generate an image of the Eiffel Tower at night."}, | |
| {"text": "Search for the latest trends on YouTube."}, | |
| ] | |
| def handle_text(text, state): | |
| response = respond({"text": text}, state) | |
| return response, state | |
| def handle_file_upload(files, state): | |
| response = respond({"files": files, "text": "Describe this image."}, state) | |
| return response, state | |
| # Connect components to callbacks | |
| text_input.submit(handle_text, [text_input], [chatbot]) | |
| file_input.change(handle_file_upload, [file_input], [chatbot]) | |
| # Search button functionality | |
| search_button.click(lambda query: search(query), [text_input], [chatbot]) | |
| image_button.click(lambda text: generate_image(text), [text_input], [output]) | |
| # Launch the Gradio interface | |
| demo.launch() |