Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#6
by
hjbfd
- opened
app.py
CHANGED
|
@@ -10,6 +10,8 @@ from PIL import Image
|
|
| 10 |
import random
|
| 11 |
import numpy as np
|
| 12 |
import spaces
|
|
|
|
|
|
|
| 13 |
|
| 14 |
import wan
|
| 15 |
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
|
@@ -61,7 +63,52 @@ pipeline = wan.WanTI2V(
|
|
| 61 |
)
|
| 62 |
print("Pipeline initialized and ready.")
|
| 63 |
|
| 64 |
-
# --- Helper Functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
|
| 66 |
min_slider_h, max_slider_h,
|
| 67 |
min_slider_w, max_slider_w,
|
|
@@ -83,38 +130,65 @@ def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
|
|
| 83 |
|
| 84 |
return new_h, new_w
|
| 85 |
|
| 86 |
-
def
|
| 87 |
"""
|
| 88 |
-
Handle image upload and calculate appropriate dimensions
|
| 89 |
|
| 90 |
Args:
|
| 91 |
-
|
| 92 |
current_h_val: Current height slider value
|
| 93 |
current_w_val: Current width slider value
|
| 94 |
|
| 95 |
Returns:
|
| 96 |
-
Tuple of gr.update
|
| 97 |
"""
|
| 98 |
-
if
|
| 99 |
-
return gr.update(value=DEFAULT_H_SLIDER_VALUE),
|
|
|
|
|
|
|
|
|
|
| 100 |
try:
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
new_h, new_w = _calculate_new_dimensions_wan(
|
| 108 |
pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
|
| 109 |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
|
| 110 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
|
| 111 |
)
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
except Exception as e:
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
def get_duration(
|
|
|
|
| 118 |
prompt,
|
| 119 |
height,
|
| 120 |
width,
|
|
@@ -130,7 +204,8 @@ def get_duration(image,
|
|
| 130 |
# --- 2. Gradio Inference Function ---
|
| 131 |
@spaces.GPU(duration=get_duration)
|
| 132 |
def generate_video(
|
| 133 |
-
|
|
|
|
| 134 |
prompt,
|
| 135 |
height,
|
| 136 |
width,
|
|
@@ -142,10 +217,11 @@ def generate_video(
|
|
| 142 |
progress=gr.Progress(track_tqdm=True)
|
| 143 |
):
|
| 144 |
"""
|
| 145 |
-
Generate a video from text prompt and optional image using the Wan 2.2 TI2V model.
|
| 146 |
|
| 147 |
Args:
|
| 148 |
-
|
|
|
|
| 149 |
prompt: Text prompt describing the desired video
|
| 150 |
height: Target video height in pixels
|
| 151 |
width: Target video width in pixels
|
|
@@ -167,9 +243,21 @@ def generate_video(
|
|
| 167 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
| 168 |
|
| 169 |
input_image = None
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
input_image = input_image.resize((target_w, target_h))
|
| 174 |
|
| 175 |
# Calculate number of frames based on duration
|
|
@@ -183,7 +271,7 @@ def generate_video(
|
|
| 183 |
img=input_image, # Pass None for T2V, Image for I2V
|
| 184 |
size=SIZE_CONFIGS.get(size_str, (target_h, target_w)),
|
| 185 |
max_area=MAX_AREA_CONFIGS.get(size_str, target_h * target_w),
|
| 186 |
-
frame_num=num_frames,
|
| 187 |
shift=shift,
|
| 188 |
sample_solver='unipc',
|
| 189 |
sampling_steps=int(sampling_steps),
|
|
@@ -206,16 +294,29 @@ def generate_video(
|
|
| 206 |
|
| 207 |
|
| 208 |
# --- 3. Gradio Interface ---
|
| 209 |
-
css = ".gradio-container {max-width:
|
| 210 |
|
| 211 |
with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
| 212 |
-
gr.Markdown("# Wan 2.2 TI2V 5B")
|
| 213 |
-
gr.Markdown("
|
| 214 |
|
| 215 |
with gr.Row():
|
| 216 |
with gr.Column(scale=2):
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
duration_input = gr.Slider(
|
| 220 |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
|
| 221 |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
|
|
@@ -227,8 +328,20 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
|
| 227 |
|
| 228 |
with gr.Accordion("Advanced Settings", open=False):
|
| 229 |
with gr.Row():
|
| 230 |
-
height_input = gr.Slider(
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
|
| 233 |
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
|
| 234 |
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
|
|
@@ -238,17 +351,19 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
|
| 238 |
video_output = gr.Video(label="Generated Video", elem_id="output_video")
|
| 239 |
run_button = gr.Button("Generate Video", variant="primary")
|
| 240 |
|
| 241 |
-
# Add image upload handler
|
| 242 |
-
|
| 243 |
-
fn=
|
| 244 |
-
inputs=[
|
| 245 |
-
outputs=[height_input, width_input]
|
| 246 |
)
|
| 247 |
|
| 248 |
-
|
| 249 |
-
fn=
|
| 250 |
-
|
| 251 |
-
|
|
|
|
|
|
|
| 252 |
)
|
| 253 |
|
| 254 |
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
|
|
@@ -258,7 +373,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
|
| 258 |
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", 704, 1280, 2.0],
|
| 259 |
[None, "Drone footage flying over a futuristic city with flying cars.", 704, 1280, 2.0],
|
| 260 |
],
|
| 261 |
-
inputs=[
|
| 262 |
outputs=video_output,
|
| 263 |
fn=generate_video,
|
| 264 |
cache_examples="lazy",
|
|
@@ -266,7 +381,18 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
|
| 266 |
|
| 267 |
run_button.click(
|
| 268 |
fn=generate_video,
|
| 269 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
outputs=video_output
|
| 271 |
)
|
| 272 |
|
|
|
|
| 10 |
import random
|
| 11 |
import numpy as np
|
| 12 |
import spaces
|
| 13 |
+
import cv2
|
| 14 |
+
import tempfile
|
| 15 |
|
| 16 |
import wan
|
| 17 |
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
|
|
|
| 63 |
)
|
| 64 |
print("Pipeline initialized and ready.")
|
| 65 |
|
| 66 |
+
# --- Helper Functions ---
|
| 67 |
+
|
| 68 |
+
def extract_first_frame_from_video(video_path):
|
| 69 |
+
"""
|
| 70 |
+
Extract the first frame from a video file.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
video_path: Path to the video file
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
PIL Image of the first frame, or None if extraction fails
|
| 77 |
+
"""
|
| 78 |
+
try:
|
| 79 |
+
cap = cv2.VideoCapture(video_path)
|
| 80 |
+
ret, frame = cap.read()
|
| 81 |
+
cap.release()
|
| 82 |
+
|
| 83 |
+
if ret:
|
| 84 |
+
# Convert BGR to RGB
|
| 85 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 86 |
+
return Image.fromarray(frame_rgb)
|
| 87 |
+
return None
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print(f"Error extracting frame from video: {e}")
|
| 90 |
+
return None
|
| 91 |
+
|
| 92 |
+
def get_video_dimensions(video_path):
|
| 93 |
+
"""
|
| 94 |
+
Get the dimensions of a video file.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
video_path: Path to the video file
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
Tuple of (width, height) or None if extraction fails
|
| 101 |
+
"""
|
| 102 |
+
try:
|
| 103 |
+
cap = cv2.VideoCapture(video_path)
|
| 104 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 105 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 106 |
+
cap.release()
|
| 107 |
+
return width, height
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"Error getting video dimensions: {e}")
|
| 110 |
+
return None
|
| 111 |
+
|
| 112 |
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
|
| 113 |
min_slider_h, max_slider_h,
|
| 114 |
min_slider_w, max_slider_w,
|
|
|
|
| 130 |
|
| 131 |
return new_h, new_w
|
| 132 |
|
| 133 |
+
def handle_media_upload_for_dims_wan(uploaded_media, current_h_val, current_w_val):
|
| 134 |
"""
|
| 135 |
+
Handle image or video upload and calculate appropriate dimensions.
|
| 136 |
|
| 137 |
Args:
|
| 138 |
+
uploaded_media: The uploaded file (can be image or video path)
|
| 139 |
current_h_val: Current height slider value
|
| 140 |
current_w_val: Current width slider value
|
| 141 |
|
| 142 |
Returns:
|
| 143 |
+
Tuple of (gr.update for height, gr.update for width, first frame as numpy array or None)
|
| 144 |
"""
|
| 145 |
+
if uploaded_media is None:
|
| 146 |
+
return (gr.update(value=DEFAULT_H_SLIDER_VALUE),
|
| 147 |
+
gr.update(value=DEFAULT_W_SLIDER_VALUE),
|
| 148 |
+
None)
|
| 149 |
+
|
| 150 |
try:
|
| 151 |
+
pil_image = None
|
| 152 |
+
|
| 153 |
+
# Check if it's a video file
|
| 154 |
+
if isinstance(uploaded_media, str) and uploaded_media.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')):
|
| 155 |
+
# Extract first frame from video
|
| 156 |
+
pil_image = extract_first_frame_from_video(uploaded_media)
|
| 157 |
+
if pil_image is None:
|
| 158 |
+
gr.Warning("Could not extract frame from video")
|
| 159 |
+
return (gr.update(value=DEFAULT_H_SLIDER_VALUE),
|
| 160 |
+
gr.update(value=DEFAULT_W_SLIDER_VALUE),
|
| 161 |
+
None)
|
| 162 |
+
else:
|
| 163 |
+
# Handle as image
|
| 164 |
+
if hasattr(uploaded_media, 'shape'): # numpy array
|
| 165 |
+
pil_image = Image.fromarray(uploaded_media).convert("RGB")
|
| 166 |
+
elif isinstance(uploaded_media, str): # file path
|
| 167 |
+
pil_image = Image.open(uploaded_media).convert("RGB")
|
| 168 |
+
else: # PIL Image
|
| 169 |
+
pil_image = uploaded_media
|
| 170 |
+
|
| 171 |
+
# Calculate dimensions
|
| 172 |
new_h, new_w = _calculate_new_dimensions_wan(
|
| 173 |
pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
|
| 174 |
SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
|
| 175 |
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
|
| 176 |
)
|
| 177 |
+
|
| 178 |
+
# Convert PIL image to numpy array for display
|
| 179 |
+
display_image = np.array(pil_image)
|
| 180 |
+
|
| 181 |
+
return gr.update(value=new_h), gr.update(value=new_w), display_image
|
| 182 |
+
|
| 183 |
except Exception as e:
|
| 184 |
+
print(f"Error in handle_media_upload_for_dims_wan: {e}")
|
| 185 |
+
gr.Warning("Error processing uploaded file")
|
| 186 |
+
return (gr.update(value=DEFAULT_H_SLIDER_VALUE),
|
| 187 |
+
gr.update(value=DEFAULT_W_SLIDER_VALUE),
|
| 188 |
+
None)
|
| 189 |
|
| 190 |
+
def get_duration(video_input,
|
| 191 |
+
image_preview,
|
| 192 |
prompt,
|
| 193 |
height,
|
| 194 |
width,
|
|
|
|
| 204 |
# --- 2. Gradio Inference Function ---
|
| 205 |
@spaces.GPU(duration=get_duration)
|
| 206 |
def generate_video(
|
| 207 |
+
video_input,
|
| 208 |
+
image_preview,
|
| 209 |
prompt,
|
| 210 |
height,
|
| 211 |
width,
|
|
|
|
| 217 |
progress=gr.Progress(track_tqdm=True)
|
| 218 |
):
|
| 219 |
"""
|
| 220 |
+
Generate a video from text prompt and optional image/video using the Wan 2.2 TI2V model.
|
| 221 |
|
| 222 |
Args:
|
| 223 |
+
video_input: Optional input video file path
|
| 224 |
+
image_preview: Preview image (numpy array) extracted from video or uploaded image
|
| 225 |
prompt: Text prompt describing the desired video
|
| 226 |
height: Target video height in pixels
|
| 227 |
width: Target video width in pixels
|
|
|
|
| 243 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
| 244 |
|
| 245 |
input_image = None
|
| 246 |
+
|
| 247 |
+
# Process video input if provided
|
| 248 |
+
if video_input is not None:
|
| 249 |
+
if isinstance(video_input, str) and video_input.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.webm')):
|
| 250 |
+
input_image = extract_first_frame_from_video(video_input)
|
| 251 |
+
else:
|
| 252 |
+
# Fallback to image preview
|
| 253 |
+
if image_preview is not None:
|
| 254 |
+
input_image = Image.fromarray(image_preview).convert("RGB")
|
| 255 |
+
elif image_preview is not None:
|
| 256 |
+
# Use image preview if no video input
|
| 257 |
+
input_image = Image.fromarray(image_preview).convert("RGB")
|
| 258 |
+
|
| 259 |
+
# Resize image to match target dimensions if we have an input image
|
| 260 |
+
if input_image is not None:
|
| 261 |
input_image = input_image.resize((target_w, target_h))
|
| 262 |
|
| 263 |
# Calculate number of frames based on duration
|
|
|
|
| 271 |
img=input_image, # Pass None for T2V, Image for I2V
|
| 272 |
size=SIZE_CONFIGS.get(size_str, (target_h, target_w)),
|
| 273 |
max_area=MAX_AREA_CONFIGS.get(size_str, target_h * target_w),
|
| 274 |
+
frame_num=num_frames,
|
| 275 |
shift=shift,
|
| 276 |
sample_solver='unipc',
|
| 277 |
sampling_steps=int(sampling_steps),
|
|
|
|
| 294 |
|
| 295 |
|
| 296 |
# --- 3. Gradio Interface ---
|
| 297 |
+
css = ".gradio-container {max-width: 1200px !important; margin: 0 auto} #output_video {height: 500px;} #image_preview {height: 400px;}"
|
| 298 |
|
| 299 |
with gr.Blocks(css=css, theme=gr.themes.Soft(), delete_cache=(60, 900)) as demo:
|
| 300 |
+
gr.Markdown("# Wan 2.2 TI2V 5B - Video/Image to Video")
|
| 301 |
+
gr.Markdown("Generate high quality videos using **Wan 2.2 5B Text-Image-to-Video model** with support for video input. [[model]](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B), [[paper]](https://arxiv.org/abs/2503.20314)")
|
| 302 |
|
| 303 |
with gr.Row():
|
| 304 |
with gr.Column(scale=2):
|
| 305 |
+
video_input = gr.Video(
|
| 306 |
+
label="Upload Video or Image (optional - blank for text-to-video)",
|
| 307 |
+
sources=["upload"],
|
| 308 |
+
)
|
| 309 |
+
image_preview = gr.Image(
|
| 310 |
+
type="numpy",
|
| 311 |
+
label="Preview (first frame will be extracted from video)",
|
| 312 |
+
elem_id="image_preview",
|
| 313 |
+
interactive=False
|
| 314 |
+
)
|
| 315 |
+
prompt_input = gr.Textbox(
|
| 316 |
+
label="Prompt",
|
| 317 |
+
value="A beautiful waterfall in a lush jungle, cinematic.",
|
| 318 |
+
lines=3
|
| 319 |
+
)
|
| 320 |
duration_input = gr.Slider(
|
| 321 |
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS, 1),
|
| 322 |
maximum=round(MAX_FRAMES_MODEL/FIXED_FPS, 1),
|
|
|
|
| 328 |
|
| 329 |
with gr.Accordion("Advanced Settings", open=False):
|
| 330 |
with gr.Row():
|
| 331 |
+
height_input = gr.Slider(
|
| 332 |
+
minimum=SLIDER_MIN_H,
|
| 333 |
+
maximum=SLIDER_MAX_H,
|
| 334 |
+
step=MOD_VALUE,
|
| 335 |
+
value=DEFAULT_H_SLIDER_VALUE,
|
| 336 |
+
label=f"Output Height (multiple of {MOD_VALUE})"
|
| 337 |
+
)
|
| 338 |
+
width_input = gr.Slider(
|
| 339 |
+
minimum=SLIDER_MIN_W,
|
| 340 |
+
maximum=SLIDER_MAX_W,
|
| 341 |
+
step=MOD_VALUE,
|
| 342 |
+
value=DEFAULT_W_SLIDER_VALUE,
|
| 343 |
+
label=f"Output Width (multiple of {MOD_VALUE})"
|
| 344 |
+
)
|
| 345 |
steps_input = gr.Slider(label="Sampling Steps", minimum=10, maximum=50, value=38, step=1)
|
| 346 |
scale_input = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, value=cfg.sample_guide_scale, step=0.1)
|
| 347 |
shift_input = gr.Slider(label="Sample Shift", minimum=1.0, maximum=20.0, value=cfg.sample_shift, step=0.1)
|
|
|
|
| 351 |
video_output = gr.Video(label="Generated Video", elem_id="output_video")
|
| 352 |
run_button = gr.Button("Generate Video", variant="primary")
|
| 353 |
|
| 354 |
+
# Add video/image upload handler
|
| 355 |
+
video_input.upload(
|
| 356 |
+
fn=handle_media_upload_for_dims_wan,
|
| 357 |
+
inputs=[video_input, height_input, width_input],
|
| 358 |
+
outputs=[height_input, width_input, image_preview]
|
| 359 |
)
|
| 360 |
|
| 361 |
+
video_input.clear(
|
| 362 |
+
fn=lambda: (gr.update(value=DEFAULT_H_SLIDER_VALUE),
|
| 363 |
+
gr.update(value=DEFAULT_W_SLIDER_VALUE),
|
| 364 |
+
None),
|
| 365 |
+
inputs=[],
|
| 366 |
+
outputs=[height_input, width_input, image_preview]
|
| 367 |
)
|
| 368 |
|
| 369 |
example_image_path = os.path.join(os.path.dirname(__file__), "examples/i2v_input.JPG")
|
|
|
|
| 373 |
[None, "A cinematic shot of a boat sailing on a calm sea at sunset.", 704, 1280, 2.0],
|
| 374 |
[None, "Drone footage flying over a futuristic city with flying cars.", 704, 1280, 2.0],
|
| 375 |
],
|
| 376 |
+
inputs=[video_input, prompt_input, height_input, width_input, duration_input],
|
| 377 |
outputs=video_output,
|
| 378 |
fn=generate_video,
|
| 379 |
cache_examples="lazy",
|
|
|
|
| 381 |
|
| 382 |
run_button.click(
|
| 383 |
fn=generate_video,
|
| 384 |
+
inputs=[
|
| 385 |
+
video_input,
|
| 386 |
+
image_preview,
|
| 387 |
+
prompt_input,
|
| 388 |
+
height_input,
|
| 389 |
+
width_input,
|
| 390 |
+
duration_input,
|
| 391 |
+
steps_input,
|
| 392 |
+
scale_input,
|
| 393 |
+
shift_input,
|
| 394 |
+
seed_input
|
| 395 |
+
],
|
| 396 |
outputs=video_output
|
| 397 |
)
|
| 398 |
|