File size: 11,248 Bytes
ceaa691
 
 
 
 
0c538c0
ceaa691
 
 
 
42e73f2
ceaa691
2d33bc7
 
 
 
 
 
 
 
 
0c538c0
 
 
5c0eb1b
42e73f2
ceaa691
2d33bc7
 
42e73f2
ceaa691
42e73f2
 
 
0c538c0
 
42e73f2
 
f85b1a5
42e73f2
 
6f648c9
 
 
f85b1a5
42e73f2
ceaa691
f85b1a5
 
 
42e73f2
ceaa691
 
2d33bc7
 
47c5ad7
0c538c0
 
 
42e73f2
 
f85b1a5
 
 
0c538c0
 
42e73f2
 
f85b1a5
42e73f2
f85b1a5
ceaa691
 
42e73f2
 
f85b1a5
 
0c538c0
2d33bc7
42e73f2
f85b1a5
42e73f2
 
0c538c0
f85b1a5
 
42e73f2
0c538c0
f85b1a5
42e73f2
 
0c538c0
f85b1a5
 
42e73f2
ffd1ea4
ceaa691
42e73f2
 
0c538c0
42e73f2
2d33bc7
f85b1a5
 
 
2d33bc7
0c538c0
 
2d33bc7
f85b1a5
 
 
 
 
ceaa691
42e73f2
 
 
ceaa691
0c538c0
 
 
 
 
 
 
 
 
 
 
 
42e73f2
f85b1a5
ceaa691
 
2d33bc7
42e73f2
5c0eb1b
ceaa691
42e73f2
 
 
 
 
b2ae2a5
2d33bc7
 
 
0c538c0
2d33bc7
 
ffd1ea4
2d33bc7
 
 
0c538c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d33bc7
 
ceaa691
0c538c0
 
2d33bc7
f85b1a5
947aef7
42e73f2
5c0eb1b
ceaa691
42e73f2
0c538c0
 
 
 
42e73f2
0c538c0
2d33bc7
 
 
 
 
 
 
 
f85b1a5
 
 
 
 
 
 
 
 
 
 
 
 
42e73f2
 
f85b1a5
5c0eb1b
ffd1ea4
42e73f2
 
 
04342e7
2d33bc7
 
 
 
 
5b29aec
2d33bc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b29aec
2d33bc7
 
 
 
5b29aec
2d33bc7
 
 
5b29aec
2d33bc7
 
 
 
 
ceaa691
 
 
 
 
10400ea
0c538c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python3
import os
import json
import logging
import re
from typing import Dict, Any, List, Optional
from pathlib import Path
from flask import Flask, request, jsonify
from flask_cors import CORS
from dotenv import load_dotenv
from werkzeug.utils import secure_filename
from langchain_groq import ChatGroq
from typing_extensions import TypedDict

# --- Type Definitions for State Management ---
class TaggedReply(TypedDict):
    reply: str
    tags: List[str]

class AssistantState(TypedDict):
    conversationSummary: str
    language: str 
    taggedReplies: List[TaggedReply]
    # Note: lastUserMessage is calculated on request, not stored in state

# --- Logging ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s")
logger = logging.getLogger("code-assistant")

# --- Load environment ---
load_dotenv()
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
if not GROQ_API_KEY:
    logger.error("GROQ_API_KEY not set in environment")
    # For deployment, consider raising an exception instead of exiting:
    # raise ValueError("GROQ_API_KEY not set in environment") 
    exit(1)

# --- Flask app setup ---
BASE_DIR = Path(__file__).resolve().parent
static_folder = BASE_DIR / "static"

app = Flask(__name__, static_folder=str(static_folder), static_url_path="/static")
CORS(app)

# --- LLM setup ---
llm = ChatGroq(
    model=os.getenv("LLM_MODEL", "meta-llama/llama-4-scout-17b-16e-instruct"),
    temperature=0.1, # Set a lower, deterministic temperature
    max_tokens=2048, # Ensure max_tokens is set to avoid truncation
    api_key=GROQ_API_KEY,
)

PROGRAMMING_ASSISTANT_PROMPT = """
You are an expert programming assistant. Your role is to provide code suggestions, fix bugs, explain programming concepts, and offer contextual help based on the user's query and preferred programming language.

**CONTEXT HANDLING RULES (Follow these strictly):**
- **Conversation Summary:** At the end of every response, you MUST provide an updated, concise `conversationSummary` based on the entire chat history provided. This summary helps you maintain context.
- **Language Adaptation:** Adjust your suggestions, code, and explanations to the programming language specified in the 'language' field of the 'AssistantState'.

STRICT OUTPUT FORMAT (JSON ONLY):
Return a single JSON object with the following keys. **The JSON object MUST be enclosed in a single ```json block.**
- assistant_reply: string  // A natural language reply to the user (short and helpful). Do NOT include code blocks here.
- code_snippet: string  // If suggesting code, provide it here in a markdown code block (e.g., ```python\\nprint('Hello')\\n```). If no code is required, use an empty string: "".
- state_updates: object  // updates to the internal state, must include: language, conversationSummary
- suggested_tags: array of strings // a list of 1-3 relevant tags for the assistant_reply

Rules:
- ALWAYS include all four top-level keys: `assistant_reply`, `code_snippet`, `state_updates`, and `suggested_tags`.
- ALWAYS include `assistant_reply` as a non-empty string.
- Do NOT produce any text outside the JSON block.
"""

def extract_json_from_llm_response(raw_response: str) -> dict:
    default = {
        "assistant_reply": "I'm sorry, I couldn't process the response correctly. Could you please rephrase?",
        "code_snippet": "",
        "state_updates": {"conversationSummary": "", "language": "Python"},
        "suggested_tags": [],
    }
    
    if not raw_response or not isinstance(raw_response, str):
        return default
    
    # Use a non-greedy regex to find the JSON content inside the first code block
    m = re.search(r"```json\s*([\s\S]*?)\s*```", raw_response)
    json_string = m.group(1).strip() if m else raw_response
    
    # Further refine candidate to just the JSON object content
    first = json_string.find('{')
    last = json_string.rfind('}')
    candidate = json_string[first:last+1] if first != -1 and last != -1 and first < last else json_string
    
    # Remove trailing commas which can break JSON parsing
    candidate = re.sub(r',\s*(?=[}\]])', '', candidate)
    
    try:
        parsed = json.loads(candidate)
    except Exception as e:
        logger.warning("Failed to parse JSON from LLM output: %s. Candidate: %s", e, candidate)
        return default
    
    # Validate and clean up the parsed dictionary
    if isinstance(parsed, dict) and "assistant_reply" in parsed:
        parsed.setdefault("code_snippet", "")
        parsed.setdefault("state_updates", {})
        parsed["state_updates"].setdefault("conversationSummary", "")
        parsed["state_updates"].setdefault("language", "Python")
        parsed.setdefault("suggested_tags", [])
        
        # Ensure reply is not empty
        if not parsed["assistant_reply"].strip():
             parsed["assistant_reply"] = "I need a clearer instruction to provide a reply."
        
        return parsed
    else:
        logger.warning("Parsed JSON missing 'assistant_reply' or invalid format. Returning default.")
        return default

def detect_language_from_text(text: str) -> Optional[str]:
    """Simple check for common programming languages."""
    if not text:
        return None
    lower = text.lower()
    known_languages = ["python", "javascript", "java", "c++", "c#", "go", "ruby", "php", "typescript", "swift"]
    
    lang_match = re.search(r'\b(in|using|for)\s+(' + '|'.join(known_languages) + r')\b', lower)
    if lang_match:
        return lang_match.group(2).capitalize()
    return None

# --- Flask routes ---
@app.route("/", methods=["GET"])
def serve_frontend():
    try:
        return app.send_static_file("frontend.html") 
    except Exception:
        return "<h3>frontend.html not found in static/ — please add your frontend.html there.</h3>", 404

@app.route("/chat", methods=["POST"])
def chat():
    data = request.get_json(force=True)
    if not isinstance(data, dict):
        return jsonify({"error": "invalid request body"}), 400

    chat_history: List[Dict[str, str]] = data.get("chat_history") or []
    assistant_state: AssistantState = data.get("assistant_state") or {}

    # Initialize/Clean up state
    state: AssistantState = {
        "conversationSummary": assistant_state.get("conversationSummary", ""),
        "language": assistant_state.get("language", "Python"),
        "taggedReplies": assistant_state.get("taggedReplies", []),
    }
    
    # 1. Prepare LLM Messages from Full History
    llm_messages = [{"role": "system", "content": PROGRAMMING_ASSISTANT_PROMPT}]
    
    last_user_message = ""
    
    for msg in chat_history:
        role = msg.get("role")
        content = msg.get("content")
        if role in ["user", "assistant"] and content:
            llm_messages.append({"role": role, "content": content})
            if role == "user":
                last_user_message = content

    # 2. Language Detection & State Update
    detected_lang = detect_language_from_text(last_user_message)
    if detected_lang and detected_lang.lower() != state["language"].lower():
        logger.info("Detected new language: %s", detected_lang)
        state["language"] = detected_lang
        
    # 3. Inject Contextual Hint and State into the LAST user message
    context_hint = f"Current Language: {state['language']}. Conversation Summary so far: {state['conversationSummary']}"
    
    if llm_messages and llm_messages[-1]["role"] == "user":
        llm_messages[-1]["content"] = f"USER MESSAGE: {last_user_message}\n\n[CONTEXT HINT: {context_hint}]"
    elif last_user_message:
        llm_messages.append({"role": "user", "content": f"USER MESSAGE: {last_user_message}\n\n[CONTEXT HINT: {context_hint}]"})
    
    
    try:
        logger.info("Invoking LLM with full history and prepared prompt...")
        llm_response = llm.invoke(llm_messages)
        raw_response = llm_response.content if hasattr(llm_response, "content") else str(llm_response)
        
        logger.info(f"Raw LLM response: {raw_response}")
        parsed_result = extract_json_from_llm_response(raw_response)

    except Exception as e:
        logger.exception("LLM invocation failed")
        error_detail = str(e)
        if 'decommissioned' in error_detail:
             error_detail = "LLM Model Error: The model is likely decommissioned. Please check the 'LLM_MODEL' environment variable or the default model in app.py."
        return jsonify({"error": "LLM invocation failed", "detail": error_detail}), 500

    # 4. State Update from LLM
    updated_state_from_llm = parsed_result.get("state_updates", {})
    
    if 'conversationSummary' in updated_state_from_llm:
        state["conversationSummary"] = updated_state_from_llm["conversationSummary"]
    if 'language' in updated_state_from_llm:
        state["language"] = updated_state_from_llm["language"]

    assistant_reply = parsed_result.get("assistant_reply")
    code_snippet = parsed_result.get("code_snippet")
    
    # 5. Final Response Payload: Combine the reply and the code snippet
    # The frontend is expecting the code to be *in* the assistant_reply, so we stitch it back together.
    final_reply_content = assistant_reply
    if code_snippet and code_snippet.strip():
        # Add a newline for clean separation if the reply isn't just whitespace
        if final_reply_content.strip():
            final_reply_content += "\n\n"
        final_reply_content += code_snippet
        
    if not final_reply_content.strip():
        final_reply_content = "I'm here to help with your code! What programming language are you using?"

    response_payload = {
        "assistant_reply": final_reply_content, # Send combined reply + code
        "updated_state": state,
        "suggested_tags": parsed_result.get("suggested_tags", []),
    }

    return jsonify(response_payload)

@app.route("/tag_reply", methods=["POST"])
def tag_reply():
    data = request.get_json(force=True)
    if not isinstance(data, dict):
        return jsonify({"error": "invalid request body"}), 400

    reply_content = data.get("reply")
    tags = data.get("tags")
    assistant_state: AssistantState = data.get("assistant_state") or {}

    if not reply_content or not tags:
        return jsonify({"error": "Missing 'reply' or 'tags' in request"}), 400
    
    tags = [str(t).strip() for t in tags if str(t).strip()]
    if not tags:
        return jsonify({"error": "Tags list cannot be empty"}), 400

    state: AssistantState = {
        "conversationSummary": assistant_state.get("conversationSummary", ""),
        "language": assistant_state.get("language", "Python"),
        "taggedReplies": assistant_state.get("taggedReplies", []),
    }

    new_tagged_reply: TaggedReply = {
        "reply": reply_content,
        "tags": tags,
    }

    state["taggedReplies"].append(new_tagged_reply)
    
    logger.info("Reply tagged with: %s", tags)

    return jsonify({
        "message": "Reply saved and tagged successfully.",
        "updated_state": state,
    }), 200

@app.route("/ping", methods=["GET"])
def ping():
    return jsonify({"status": "ok"})

if __name__ == "__main__":
    port = int(os.getenv("PORT", 7860))
    app.run(host="0.0.0.0", port=port, debug=True)