WithAnyone_demo / infer_withanyone.py
WithAnyone's picture
Upload 29 files
4910a8a verified
# Copyright (c) 2025 Fudan University. All rights reserved.
import os
import dataclasses
from typing import Literal
from accelerate import Accelerator
from transformers import HfArgumentParser
from PIL import Image
import json
import itertools
from withanyone.flux.pipeline import WithAnyonePipeline
from util import extract_moref, general_face_preserving_resize, horizontal_concat, extract_object, FaceExtractor
import numpy as np
import random
import torch
from transformers import AutoModelForImageSegmentation
from torch.cuda.amp import autocast
BACK_UP_BBOXES_DOUBLE = [
[[100,100,200,200], [300,100,400,200]], # 2 faces
[[150,100,250,200], [300,100,400,200]]
]
BACK_UP_BBOXES = [ # for single face
[[150,100,250,200]],
[[100,100,200,200]],
[[200,100,300,200]],
[[250,100,350,200]],
[[300,100,400,200]],
]
@dataclasses.dataclass
class InferenceArgs:
prompt: str | None = None
image_paths: list[str] | None = None
eval_json_path: str | None = None
offload: bool = False
num_images_per_prompt: int = 1
model_type: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
width: int = 512
height: int = 512
ref_size: int = -1
num_steps: int = 25
guidance: float = 4
seed: int = 1234
save_path: str = "output/inference"
only_lora: bool = True
concat_refs: bool = False
lora_rank: int = 64
data_resolution: int = 512
save_iter: str = "500"
use_rec: bool = False
drop_text: bool = False
use_matting: bool = False
id_weight: float = 1.0
siglip_weight: float = 1.0
bbox_from_json: bool = True
data_root: str = "./"
# for lora
additional_lora: str | None = None
trigger: str = ""
lora_weight: float = 1.0
# path to the ipa model
ipa_path: str = "./ckpt/ipa.safetensors"
clip_path: str = "openai/clip-vit-large-patch14"
t5_path: str = "xlabs-ai/xflux_text_encoders"
flux_path: str = "black-forest-labs/FLUX.1-dev"
siglip_path: str = "google/siglip-base-patch16-256-i18n"
def main(args: InferenceArgs):
accelerator = Accelerator()
face_extractor = FaceExtractor()
pipeline = WithAnyonePipeline(
args.model_type,
args.ipa_path,
accelerator.device,
args.offload,
only_lora=args.only_lora,
face_extractor=face_extractor,
additional_lora_ckpt=args.additional_lora,
lora_weight=args.lora_weight,
clip_path=args.clip_path,
t5_path=args.t5_path,
flux_path=args.flux_path,
siglip_path=args.siglip_path,
)
if args.use_matting:
birefnet = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True).to('cuda', dtype=torch.bfloat16)
assert args.prompt is not None or args.eval_json_path is not None, \
"Please provide either prompt or eval_json_path"
# if args.eval_json_path is not None:
assert args.eval_json_path is not None, "Please provide eval_json_path. This script only supports batch inference."
with open(args.eval_json_path, "rt") as f:
data_dicts = json.load(f)
data_root = args.data_root
metadata = {}
for (i, data_dict), j in itertools.product(enumerate(data_dicts), range(args.num_images_per_prompt)):
if (i * args.num_images_per_prompt + j) % accelerator.num_processes != accelerator.process_index:
continue
# check if exist, if this image is already generated, skip it
# if any of the images are None, skip this image
if not os.path.exists(os.path.join(data_root, data_dict["image_paths"][0])):
print(f"Image {i} does not exist, skipping...")
print("path:", os.path.join(data_root, data_dict["image_paths"][0]))
continue
# extract bbox
ori_img_path = data_dict.get("ori_img_path", None)
# ori_img = Image.open(os.path.join(data_root, data_dict["ori_img_path"]))
# basename = data_dict["ori_img_path"].split(".")[0].replace("/", "_")
if ori_img_path is None:
basename = f"{i}_{j}"
else:
basename = data_dict["ori_img_path"].split(".")[0].replace("/", "_")
ori_img = Image.open(os.path.join(data_root, ori_img_path))
bboxes = None
print("Processing image", i, basename)
if not args.bbox_from_json:
if ori_img_path is None:
print(f"Image {i} has no ori_img_path, cannot extract bbox, skipping...")
continue
ori_img = Image.open(os.path.join(data_root, ori_img_path))
bboxes = face_extractor.locate_bboxes(ori_img)
# cut bbox length to num of imgae_paths
if bboxes is not None and len(bboxes) > len(data_dict["image_paths"]):
bboxes = bboxes[:len(data_dict["image_paths"])]
elif bboxes is not None and len(bboxes) < len(data_dict["image_paths"]):
print(f"Image {i} has less faces than image_paths, continuing...")
continue
else:
json_file_path = os.path.join(data_root, basename + ".json")
if os.path.exists(json_file_path):
with open(json_file_path, "r") as f:
json_data = json.load(f)
old_bboxes = json_data.get("bboxes", None)
if old_bboxes is None:
print(f"Image {i} has no bboxes in json file, using backup bboxes...")
# v202 -> 2 faces v200_single -> 1 face
if "v202" in args.eval_json_path:
old_bboxes = random.choice(BACK_UP_BBOXES_DOUBLE)
elif "v200_single" in args.eval_json_path:
old_bboxes = random.choice(BACK_UP_BBOXES)
def recalculate_bbox( bbox, crop):
"""
The image is cropped, so we need to recalculate the bbox.
bbox: [x1, y1, x2, y2]
crop: [x1c, y1c, x2c, y2c]
we just need to minus x1c and y1c from x1, y1,
"""
x1, y1, x2, y2 = bbox
x1c, y1c, x2c, y2c = crop
return [x1-x1c, y1-y1c, x2-x1c, y2-y1c]
crop = json_data.get("crop", None)
rec_bboxes = [
recalculate_bbox(bbox, crop) if crop is not None else bbox for bbox in old_bboxes]
# face_preserving_resize(image, bboxes, 512)
if ori_img_path is not None:
_, bboxes = general_face_preserving_resize(ori_img, rec_bboxes, 512)
# else we consider the provided bbox is already in target size
else:
bboxes = rec_bboxes
if bboxes is None:
print(f"Image {i} has no face, bboxes are None, using backup bboxes..., basename: {basename}")
bboxes = random.choice(BACK_UP_BBOXES_DOUBLE)
print(f"Use backup bboxes: {bboxes}")
ref_imgs = []
arcface_embeddings = []
if not args.use_rec:
break_flag = False
for img_path in data_dict["image_paths"]:
img = Image.open(os.path.join(data_root, img_path))
ref_img, arcface_embedding = face_extractor.extract(img)
if ref_img is not None and arcface_embedding is not None:
if args.use_matting:
ref_img, _ = extract_object(birefnet, ref_img)
ref_imgs.append(ref_img)
arcface_embeddings.append(arcface_embedding)
else:
print(f"Image {i} has no face, skipping...")
break_flag = True
break
if break_flag:
continue
else:
ref_imgs, arcface_embeddings = face_extractor.extract_refs(ori_img)
if ref_imgs is None or arcface_embeddings is None:
print(f"Image {i} has no face, skipping...")
continue
if args.use_matting:
ref_imgs = [extract_object(birefnet, ref_img)[0] for ref_img in ref_imgs]
# arcface to tensor
arcface_embeddings = [torch.tensor(arcface_embedding) for arcface_embedding in arcface_embeddings]
arcface_embeddings = torch.stack(arcface_embeddings).to(accelerator.device)
# check, if any of the images are None, if so, skip this image
if any(ref_img is None for ref_img in ref_imgs):
print(f"Image {i}: failed to extract face, skipping...")
continue
if args.ref_size==-1:
args.ref_size = 512 if len(ref_imgs)==1 else 320
if args.trigger != "" and args.trigger is not None:
data_dict["prompt"] = args.trigger + " " + data_dict["prompt"]
image_gen = pipeline(
prompt=data_dict["prompt"] if not args.drop_text else "",
width=args.width,
height=args.height,
guidance=args.guidance,
num_steps=args.num_steps,
seed=args.seed,
ref_imgs=ref_imgs,
arcface_embeddings=arcface_embeddings,
bboxes=[bboxes],
id_weight=args.id_weight,
siglip_weight=args.siglip_weight,
)
if args.concat_refs:
image_gen = horizontal_concat([image_gen, *ref_imgs])
os.makedirs(args.save_path, exist_ok=True)
save_path = os.path.join(args.save_path, basename)
os.makedirs(os.path.join(args.save_path, basename), exist_ok=True)
# save refs, image_gen and original image
for k, ref_img in enumerate(ref_imgs):
ref_img.save(os.path.join(save_path, f"ref_{k}.jpg"))
image_gen.save(os.path.join(save_path, f"out.jpg"))
# original image
ori_img = Image.open(os.path.join(data_root, data_dict["ori_img_path"])) if "ori_img_path" in data_dict else None
if ori_img is not None:
ori_img.save(os.path.join(save_path, f"ori.jpg"))
# save config
args_dict = vars(args)
args_dict['prompt'] = data_dict["prompt"]
args_dict["name"] = data_dict["name"] if "name" in data_dict else None
json.dump(args_dict, open(os.path.join(save_path, f"meta.json"), 'w'), indent=4, ensure_ascii=False)
if __name__ == "__main__":
parser = HfArgumentParser([InferenceArgs])
args = parser.parse_args_into_dataclasses()[0]
main(args)