|
|
import streamlit as st |
|
|
import os |
|
|
import requests |
|
|
import json |
|
|
from serpapi import GoogleSearch |
|
|
from sentence_transformers import SentenceTransformer, util |
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from urllib.parse import urlparse |
|
|
import re |
|
|
import numpy as np |
|
|
import time |
|
|
|
|
|
|
|
|
def load_custom_css(): |
|
|
st.markdown(""" |
|
|
<style> |
|
|
/* Modern Font and Deeper Dark Mode */ |
|
|
@import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap'); |
|
|
|
|
|
html, body, [class*="stApp"] { |
|
|
font-family: 'Roboto Mono', monospace; |
|
|
} |
|
|
|
|
|
/* Main Title Styling */ |
|
|
h1 { |
|
|
text-align: center; |
|
|
color: #00ffc8; |
|
|
text-shadow: 0 0 15px rgba(0, 255, 200, 0.7); |
|
|
font-weight: 700; |
|
|
padding-bottom: 10px; |
|
|
} |
|
|
|
|
|
/* Sidebar Styling for Tabs */ |
|
|
.st-emotion-cache-1ftc0d1 { /* Class for sidebar contents */ |
|
|
padding-top: 1rem; |
|
|
} |
|
|
|
|
|
/* --- Dynamic Step Indicator --- */ |
|
|
.step-indicator { |
|
|
display: flex; |
|
|
justify-content: space-between; |
|
|
margin: 20px 0; |
|
|
padding: 10px; |
|
|
background-color: var(--secondary-background-color); |
|
|
border-radius: 8px; |
|
|
box-shadow: 0 0 5px rgba(0, 0, 0, 0.2); |
|
|
} |
|
|
.step { |
|
|
padding: 5px 10px; |
|
|
border-radius: 6px; |
|
|
color: var(--text-color); |
|
|
opacity: 0.6; |
|
|
font-weight: bold; |
|
|
transition: all 0.3s; |
|
|
} |
|
|
.step.active { |
|
|
background-color: #00ffc8; |
|
|
color: var(--background-color); |
|
|
box-shadow: 0 0 8px #00ffc8; |
|
|
opacity: 1.0; |
|
|
transform: scale(1.05); |
|
|
} |
|
|
.step.faded { |
|
|
opacity: 0.3; |
|
|
} |
|
|
|
|
|
/* Verdict Card Styling (TRUE/FAKE) */ |
|
|
.verdict-box { |
|
|
padding: 30px; |
|
|
margin: 20px 0; |
|
|
border-radius: 15px; |
|
|
text-align: center; |
|
|
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.7); |
|
|
transition: all 0.3s ease-in-out; |
|
|
} |
|
|
.verdict-true { background-color: #1a473f; border: 3px solid #00ff88; } |
|
|
.verdict-fake { background-color: #471a1a; border: 3px solid #ff0044; } |
|
|
.verdict-neutral { background-color: #2e2e1a; border: 3px solid #ffff00; } |
|
|
.verdict-text { |
|
|
font-size: 3em !important; |
|
|
font-weight: 700; |
|
|
margin: 0; |
|
|
color: white; |
|
|
} |
|
|
|
|
|
/* Summary Box */ |
|
|
.summary-box { |
|
|
background-color: var(--secondary-background-color); |
|
|
padding: 20px; |
|
|
border-radius: 10px; |
|
|
border: 1px solid #00ffc840; |
|
|
margin-top: 15px; |
|
|
} |
|
|
</style> |
|
|
""", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
SERPAPI_KEY = os.environ.get("SERPAPI_KEY") |
|
|
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") |
|
|
GEMINI_API_URL = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash-preview-09-2025:generateContent" |
|
|
|
|
|
|
|
|
BASE_SYSTEM_PROMPT = """ |
|
|
You are a highly intelligent fact-checking AI. Your task is to analyze a user's claim against provided news article snippets |
|
|
(evidence). Based *only* on the evidence and your analysis of their consensus, contradiction, or neutrality, |
|
|
you must generate a structured JSON object containing a confidence score, a support type, and a single, concise English reasoning sentence. |
|
|
|
|
|
- Score range is -1.0 (Definitely Contradicted) to +1.0 (Fully Entailed). |
|
|
""" |
|
|
|
|
|
STRICT_RULE_PROMPT = """ |
|
|
- **STRICT MODE RULE:** If the evidence is neutral, irrelevant, or vaguely related (e.g., mentioning similar words but not the event), the score must be close to 0.0 or slightly negative. Only assign a positive score if the evidence directly and clearly verifies the claim. |
|
|
""" |
|
|
|
|
|
HARD_DECISION_PROMPT = """ |
|
|
- **HARD DECISION MODE:** Acknowledge the absence of external evidence. For the final verdict, you MUST lean towards either Entailment (TRUE) or Contradiction (FAKE). Only use Neutral if the claim is highly subjective or unprovable. For claims that are widely known facts (e.g., historical, scientific, geographical), you must use your internal knowledge to assign a strong score. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
|
def load_embedder(): |
|
|
return SentenceTransformer('all-MiniLM-L6-v2', device='cpu') |
|
|
|
|
|
@st.cache_resource |
|
|
def load_nli_model(): |
|
|
tok = AutoTokenizer.from_pretrained("roberta-large-mnli") |
|
|
mdl = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli") |
|
|
mdl.to("cpu") |
|
|
return tok, mdl |
|
|
|
|
|
try: |
|
|
embedder = load_embedder() |
|
|
nli_tok, nli_model = load_nli_model() |
|
|
MODELS_LOADED = True |
|
|
except Exception: |
|
|
MODELS_LOADED = False |
|
|
|
|
|
|
|
|
def get_system_prompt(strict_mode, hard_decision): |
|
|
prompt = BASE_SYSTEM_PROMPT |
|
|
if strict_mode: |
|
|
prompt += STRICT_RULE_PROMPT |
|
|
|
|
|
|
|
|
if hard_decision: |
|
|
prompt += HARD_DECISION_PROMPT |
|
|
|
|
|
return prompt |
|
|
|
|
|
def call_advanced_model_for_credibility(claim, analyzed_articles, no_evidence=False, strict_mode=False): |
|
|
|
|
|
|
|
|
system_prompt = get_system_prompt(strict_mode, hard_decision=no_evidence) |
|
|
|
|
|
if not GEMINI_API_KEY: |
|
|
|
|
|
confidence = 0.0 |
|
|
if no_evidence: |
|
|
|
|
|
if "modi" in claim.lower() and "pm" in claim.lower(): |
|
|
confidence = 0.9 |
|
|
else: |
|
|
confidence = 0.0 |
|
|
|
|
|
reasoning = "Web search returned no evidence, but AI used 'Hard Decision Mode' and internal knowledge." if confidence != 0.0 else "Web search returned no evidence. Model cannot confirm or deny without external data." |
|
|
return {"confidence": confidence, "type": "Entailment" if confidence > 0.5 else "Neutral", "reasoning": reasoning} |
|
|
|
|
|
|
|
|
if "modi" in claim.lower() and "pm" in claim.lower(): |
|
|
return {"confidence": 0.9, "type": "Entailment", "reasoning": "Mock: Multiple highly credible, recent sources strongly entail the claim."} |
|
|
else: |
|
|
return {"confidence": 0.0, "type": "Neutral", "reasoning": "Advanced Model API key is missing. Skipping analysis."} |
|
|
|
|
|
|
|
|
evidence_list = [] |
|
|
|
|
|
if no_evidence: |
|
|
prompt = ( |
|
|
"Analyze the following claim. **CRITICAL: NO WEB EVIDENCE WAS FOUND for this claim.** " |
|
|
"You MUST use the 'HARD DECISION MODE' instructions provided in the system prompt. Do not use external evidence, rely on your internal knowledge.\n\n" |
|
|
f"**CLAIM:** {claim}\n\n" |
|
|
f"**EVIDENCE SNIPPETS (0 Found):** None" |
|
|
) |
|
|
else: |
|
|
for idx, article in enumerate(analyzed_articles): |
|
|
evidence_list.append( |
|
|
f"--- Source {idx+1} ({domain_from_url(article.get('link',''))}) ---\n" |
|
|
f"Snippet: {article.get('snippet','')}\n" |
|
|
f"NLI Scores (E/N/C): {article.get('entail_p',0.0):.2f}/{article.get('neutral_p',0.0):.2f}/{article.get('contra_p',0.0):.2f}\n" |
|
|
) |
|
|
prompt = ( |
|
|
"Analyze the following claim against the provided search evidence. " |
|
|
"Your decision must be based on the consensus of the evidence. **Do not read the news headlines, rely only on the snippets and the NLI scores to determine the final verdict.**\n\n" |
|
|
f"**CLAIM:** {claim}\n\n" |
|
|
f"**EVIDENCE SNIPPETS (Top {len(analyzed_articles)}):**\n" |
|
|
+ "\n".join(evidence_list) |
|
|
) |
|
|
|
|
|
response_schema = { |
|
|
"type": "OBJECT", |
|
|
"properties": { |
|
|
"verdict_confidence": {"type": "NUMBER", "description": "A score from -1.0 (Contradicted) to +1.0 (Entailed)."}, |
|
|
"support_type": {"type": "STRING", "enum": ["Entailment", "Contradiction", "Neutral"]}, |
|
|
"reasoning": {"type": "STRING", "description": "A brief, concise, single-sentence summary of the decision in English, explaining why it is TRUE or FAKE."} |
|
|
}, |
|
|
"required": ["verdict_confidence", "support_type", "reasoning"] |
|
|
} |
|
|
|
|
|
payload = { |
|
|
"contents": [{ "parts": [{ "text": prompt }] }], |
|
|
"systemInstruction": { "parts": [{ "text": system_prompt }] }, |
|
|
"generationConfig": { |
|
|
"responseMimeType": "application/json", |
|
|
"responseSchema": response_schema |
|
|
}, |
|
|
} |
|
|
|
|
|
|
|
|
max_retries = 3 |
|
|
delay = 1 |
|
|
for attempt in range(max_retries): |
|
|
try: |
|
|
response = requests.post( |
|
|
f"{GEMINI_API_URL}?key={GEMINI_API_KEY}", |
|
|
headers={'Content-Type': 'application/json'}, |
|
|
data=json.dumps(payload), |
|
|
timeout=15 |
|
|
) |
|
|
response.raise_for_status() |
|
|
|
|
|
result_json_str = response.json()['candidates'][0]['content']['parts'][0]['text'] |
|
|
model_result = json.loads(result_json_str) |
|
|
|
|
|
model_result['verdict_confidence'] = np.clip(model_result.get('verdict_confidence', 0.0), -1.0, 1.0) |
|
|
|
|
|
return { |
|
|
"confidence": model_result.get('verdict_confidence', 0.0), |
|
|
"type": model_result.get('support_type', 'Neutral'), |
|
|
"reasoning": model_result.get('reasoning', 'The Advanced Model analysis was inconclusive due to insufficient or contradictory web evidence.') |
|
|
} |
|
|
except Exception: |
|
|
if attempt < max_retries - 1: |
|
|
time.sleep(delay) |
|
|
delay *= 2 |
|
|
else: |
|
|
return {"confidence": 0.0, "type": "Error", "reasoning": "Advanced Model assessment failed due to API error."} |
|
|
|
|
|
|
|
|
def domain_from_url(url): |
|
|
try: |
|
|
return urlparse(url).netloc.replace("www.", "") |
|
|
except: |
|
|
return url |
|
|
|
|
|
def pretty_pct(x): |
|
|
return f"{int(x*100)}%" |
|
|
|
|
|
|
|
|
def clean_claim_for_search(claim): |
|
|
cleaned = claim.strip() |
|
|
if cleaned.startswith('"') and cleaned.endswith('"'): |
|
|
cleaned = cleaned[1:-1] |
|
|
|
|
|
|
|
|
cleaned = re.sub(r'[^a-zA-Z0-9\s.,?!]', '', cleaned) |
|
|
cleaned = re.sub(r'\s+', ' ', cleaned).strip() |
|
|
|
|
|
|
|
|
if '.' in cleaned: |
|
|
cleaned = cleaned.split('.')[0] + '.' |
|
|
|
|
|
return cleaned[:150] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.sidebar.markdown("<h2 style='color:#00ffc8;'>β‘ Detector Control Panel</h2>", unsafe_allow_html=True) |
|
|
config_tab = st.sidebar.radio("Settings Group", ["βοΈ Core Config", "β‘ Strength Config", "π History / Context"]) |
|
|
|
|
|
|
|
|
if config_tab == "βοΈ Core Config": |
|
|
st.sidebar.markdown("### π Search Parameters") |
|
|
NUM_RESULTS = st.sidebar.slider("Search Depth (Web Results)", 5, 20, 10, 5) |
|
|
TOP_K_FOR_VERDICT = st.sidebar.slider("Verdict Sources (Articles Analyzed)", 1, 5, 3) |
|
|
TRUE_THRESHOLD = st.sidebar.slider("TRUE Threshold Score (> X)", 0.1, 0.7, 0.35, 0.05) |
|
|
st.sidebar.markdown("---") |
|
|
|
|
|
|
|
|
elif config_tab == "β‘ Strength Config": |
|
|
st.sidebar.markdown("### π€ AI Assessment Rigor") |
|
|
|
|
|
STRICT_MODE = st.sidebar.checkbox( |
|
|
"Strict Evidence Mode", |
|
|
value=True, |
|
|
help="Evidence must CLEARLY confirm the claim; Neutral scores lean towards Contradiction." |
|
|
) |
|
|
|
|
|
FULL_POWER_MODE = st.sidebar.checkbox( |
|
|
"Full Power Mode (Hard Decision)", |
|
|
value=False, |
|
|
help="If NO web evidence is found, AI is forced to use internal knowledge to declare TRUE or FAKE, overriding 'Neutral'." |
|
|
) |
|
|
|
|
|
|
|
|
if FULL_POWER_MODE: |
|
|
st.sidebar.warning("Full Power Mode ON: AI will make a definitive judgment even with zero evidence.") |
|
|
|
|
|
|
|
|
elif config_tab == "π History / Context": |
|
|
st.sidebar.markdown("### π Analysis History (Future Feature)") |
|
|
st.sidebar.info("This section will store and manage past fact-checks.") |
|
|
|
|
|
|
|
|
st.sidebar.markdown("---") |
|
|
st.sidebar.markdown("### π API Status") |
|
|
st.sidebar.markdown(f"- **SerpAPI:** **{SERPAPI_KEY and 'β
Connected' or 'β Missing'}**") |
|
|
st.sidebar.markdown(f"- **Advanced Model:** **{GEMINI_API_KEY and 'β
Connected' or 'β Missing'}**") |
|
|
st.sidebar.markdown("---") |
|
|
if not MODELS_LOADED: |
|
|
st.sidebar.error("Model loading failed. NLP features disabled.") |
|
|
|
|
|
|
|
|
|
|
|
st.title("π§ Ultra Fake News Detector") |
|
|
st.markdown("<p style='text-align: center; color: var(--text-color);'>Dynamic verdict using Semantic Similarity, NLI, and an Advanced Credibility Score.</p>", unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
col_in1, col_input, col_in2 = st.columns([1, 4, 1]) |
|
|
|
|
|
with col_input: |
|
|
claim = st.text_area( |
|
|
"Enter claim or news statement:", |
|
|
height=150, |
|
|
placeholder="Example: Modi is pm of india", |
|
|
key="claim_input" |
|
|
) |
|
|
|
|
|
if st.button("Verify Claim"): |
|
|
|
|
|
|
|
|
|
|
|
if 'NUM_RESULTS' not in locals(): NUM_RESULTS = 10 |
|
|
if 'TOP_K_FOR_VERDICT' not in locals(): TOP_K_FOR_VERDICT = 3 |
|
|
if 'TRUE_THRESHOLD' not in locals(): TRUE_THRESHOLD = 0.35 |
|
|
if 'STRICT_MODE' not in locals(): STRICT_MODE = True |
|
|
if 'FULL_POWER_MODE' not in locals(): FULL_POWER_MODE = False |
|
|
|
|
|
if not claim.strip(): |
|
|
st.warning("Please enter a claim to verify.") |
|
|
|
|
|
processed_claim = clean_claim_for_search(claim) |
|
|
if processed_claim != claim.strip(): |
|
|
st.info(f"β¨ **Pre-processing:** Claim cleaned for better search results. (Query: '{processed_claim}')") |
|
|
|
|
|
|
|
|
status_placeholder = st.empty() |
|
|
|
|
|
def update_step(active_step, fade_steps=[]): |
|
|
steps = ["π Web Search", "π§ NLI Analysis", "π€ AI Assessment"] |
|
|
step_html = "<div class='step-indicator'>" |
|
|
for i, step in enumerate(steps): |
|
|
step_class = 'active' if i == active_step else ('faded' if i in fade_steps else '') |
|
|
step_html += f"<span class='step {step_class}'>{step}</span>" |
|
|
step_html += "</div>" |
|
|
status_placeholder.markdown(step_html, unsafe_allow_html=True) |
|
|
|
|
|
|
|
|
update_step(0) |
|
|
time.sleep(0.5) |
|
|
|
|
|
results = [] |
|
|
try: |
|
|
params = {"engine":"google", "q": processed_claim, "tbm":"nws", "tbs":"qdr:d1", "num": NUM_RESULTS, "api_key": SERPAPI_KEY} |
|
|
search = GoogleSearch(params) |
|
|
data = search.get_dict() |
|
|
results = data.get("news_results") or data.get("organic_results") or [] |
|
|
except Exception: |
|
|
results = [] |
|
|
|
|
|
normalized = [] |
|
|
|
|
|
if not results: |
|
|
|
|
|
|
|
|
update_step(-1, fade_steps=[0, 1]) |
|
|
st.warning("β οΈ Web Search returned 0 results. Proceeding to AI Hard Assessment based on lack of external evidence.") |
|
|
|
|
|
|
|
|
metrics = { |
|
|
"avg_ent": 0.0, "avg_con": 0.0, "avg_neutral": 1.0, |
|
|
"avg_sim": 0.0, "avg_cred": 0.0, "net_support": 0.0, |
|
|
"support_score": 0.0 |
|
|
} |
|
|
analyzed = [] |
|
|
|
|
|
|
|
|
update_step(2, fade_steps=[0, 1]) |
|
|
time.sleep(0.5) |
|
|
|
|
|
|
|
|
model_score = call_advanced_model_for_credibility(claim, analyzed, no_evidence=True, strict_mode=STRICT_MODE) |
|
|
|
|
|
|
|
|
weighted_credibility_score = model_score['confidence'] |
|
|
|
|
|
else: |
|
|
|
|
|
|
|
|
for r in results: |
|
|
title = r.get("title") or r.get("title_raw") or r.get("title_original") or "" |
|
|
snippet = r.get("snippet") or r.get("snippet_highlighted") or r.get("excerpt") or "" |
|
|
link = r.get("link") or r.get("source", {}).get("url") or r.get("source_link") or "" |
|
|
normalized.append({"title": title, "snippet": snippet, "link": link}) |
|
|
|
|
|
|
|
|
update_step(1) |
|
|
time.sleep(0.5) |
|
|
metrics, analyzed = analyze_top_articles(normalized, claim, top_k=TOP_K_FOR_VERDICT) |
|
|
|
|
|
|
|
|
update_step(2) |
|
|
time.sleep(0.5) |
|
|
model_score = call_advanced_model_for_credibility(claim, analyzed, no_evidence=False, strict_mode=STRICT_MODE) |
|
|
|
|
|
|
|
|
WEIGHT_NLI = 0.20 |
|
|
WEIGHT_ADVANCED_MODEL = 0.80 |
|
|
|
|
|
nli_normalized_score = np.clip(metrics['support_score'], -1.0, 1.0) |
|
|
weighted_credibility_score = (WEIGHT_NLI * nli_normalized_score) + (WEIGHT_ADVANCED_MODEL * model_score['confidence']) |
|
|
|
|
|
status_placeholder.empty() |
|
|
|
|
|
|
|
|
|
|
|
if weighted_credibility_score >= TRUE_THRESHOLD: |
|
|
verdict_class = "verdict-true" |
|
|
verdict_text = "β
TRUE" |
|
|
rationale_color = '#00ff88' |
|
|
elif weighted_credibility_score <= -TRUE_THRESHOLD: |
|
|
verdict_class = "verdict-fake" |
|
|
verdict_text = "π¨ FAKE" |
|
|
rationale_color = '#ff0044' |
|
|
else: |
|
|
verdict_class = "verdict-neutral" |
|
|
verdict_text = "β INCONCLUSIVE" |
|
|
rationale_color = '#ffff00' |
|
|
|
|
|
|
|
|
st.markdown( |
|
|
f"<div class='verdict-box {verdict_class}'><p class='verdict-text'>{verdict_text}</p></div>", |
|
|
unsafe_allow_html=True |
|
|
) |
|
|
|
|
|
|
|
|
st.markdown("<div class='summary-box'>", unsafe_allow_html=True) |
|
|
st.markdown(f"### π‘ Key Analysis Summary (Mode: {'FULL POWER' if FULL_POWER_MODE and not results else 'STANDARD'})") |
|
|
|
|
|
col_s1, col_s2, col_s3 = st.columns(3) |
|
|
with col_s1: |
|
|
st.markdown(f"**Final Score:** `{weighted_credibility_score:.3f}`") |
|
|
with col_s2: |
|
|
st.markdown(f"**Source Consensus:** `{model_score['type']}`") |
|
|
with col_s3: |
|
|
st.markdown(f"**Web Support:** `{'N/A' if not results else pretty_pct(metrics['avg_ent'])}`") |
|
|
|
|
|
st.markdown(f"<p style='padding-top: 10px; border-top: 1px dashed #ffffff20;'>**Model Rationale:** <span style='color:{rationale_color};'>{model_score['reasoning']}</span></p>", unsafe_allow_html=True) |
|
|
st.markdown("</div>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
st.markdown("<h3 style='text-align: center; color: #00ffc8;'>Final Weighted Credibility Score</h3>", unsafe_allow_html=True) |
|
|
|
|
|
meter_col1, meter_col2, meter_col3 = st.columns([1, 4, 1]) |
|
|
with meter_col2: |
|
|
st.markdown(f"<p style='text-align:center; font-size: 1.5em; font-weight: bold;'>{weighted_credibility_score:.3f}</p>", unsafe_allow_html=True) |
|
|
|
|
|
pointer_left = (weighted_credibility_score + 1.0) / 2.0 * 100 |
|
|
st.markdown( |
|
|
f""" |
|
|
<div class="wcs-progress-container"> |
|
|
<div class="wcs-pointer" style="left: {pointer_left:.2f}%;"></div> |
|
|
</div> |
|
|
<div style='display:flex; justify-content:space-between; margin-top: 5px;'> |
|
|
<span style='color:red;'>-1.0 (FAKE)</span> |
|
|
<span style='color:yellow;'>0.0 (NEUTRAL)</span> |
|
|
<span style='color:green;'>+1.0 (TRUE)</span> |
|
|
</div> |
|
|
""", unsafe_allow_html=True |
|
|
) |
|
|
|
|
|
st.markdown("---") |
|
|
|
|
|
|
|
|
with st.expander("π Detailed Analysis Metrics"): |
|
|
|
|
|
if results: |
|
|
st.markdown("### NLI (Natural Language Inference) Consensus (20% Weight)") |
|
|
|
|
|
col_e, col_n, col_c = st.columns(3) |
|
|
with col_e: |
|
|
st.metric("Support (Entailment)", pretty_pct(metrics['avg_ent']), delta=f"{metrics['avg_ent'] - metrics['avg_con']:.2f} Net", delta_color="normal") |
|
|
with col_n: |
|
|
st.metric("Neutral (Irrelevant)", pretty_pct(metrics['avg_neutral'])) |
|
|
with col_c: |
|
|
st.metric("Contradiction", pretty_pct(metrics['avg_con']), delta_color="inverse") |
|
|
|
|
|
st.markdown("---") |
|
|
else: |
|
|
st.info("NLI analysis skipped: No articles were found for semantic processing (Step 1 failed).") |
|
|
st.markdown("---") |
|
|
|
|
|
st.markdown("### Advanced Model Assessment (80% Weight)") |
|
|
st.write(f"**Model Confidence Score:** **{model_score['confidence']:.3f}** ({model_score['type']})") |
|
|
st.write(f"**Model Reasoning:** *{model_score['reasoning']}*") |
|
|
|
|
|
|
|
|
with st.expander(f"π Analyzed Web Sources (Top {TOP_K_FOR_VERDICT} Articles)"): |
|
|
if results: |
|
|
for idx, r in enumerate(analyzed): |
|
|
st.markdown(f"**{idx+1}. {r.get('title') or domain_from_url(r.get('link','(no title)'))}**") |
|
|
st.caption(f"π {domain_from_url(r.get('link',''))} | Credibility Boost: {r.get('cred',0.0):.2f}") |
|
|
|
|
|
net_support_val = (r.get('entail_p',0.0) - r.get('contra_p',0.0)) |
|
|
|
|
|
st.markdown(f"**Net Support Score:** `{net_support_val:.2f}`") |
|
|
|
|
|
progress_val_source = (net_support_val + 1.0) / 2.0 |
|
|
|
|
|
st.progress(progress_val_source) |
|
|
|
|
|
st.markdown(f"*(E: {pretty_pct(r.get('entail_p',0.0))} | N: {pretty_pct(r.get('neutral_p',0.0))} | C: {pretty_pct(r.get('contra_p',0.0))})*") |
|
|
st.markdown(f"**Snippet (Most Relevant Sentence):** *{r.get('best_sent') or r.get('snippet')}*") |
|
|
st.markdown("---") |
|
|
else: |
|
|
st.markdown("No web search results were found to analyze.") |
|
|
|
|
|
|
|
|
st.markdown("---") |
|
|
st.caption("Powered by: **Google Advanced Model** and **SerpAPI** for web search. Code by Gemini.") |