Raresmuntenas's picture
Update app.py
c9de6c1 verified
raw
history blame
6.77 kB
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
print("Initializing Smolagents CodeAgent...")
# 1. Define the Model
# Qwen 2.5 Coder is excellent for the logic/math required in GAIA
# It will automatically use the HF_TOKEN from your Space Secrets
model = HfApiModel(
model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
)
# 2. Define Tools
search_tool = DuckDuckGoSearchTool()
# 3. Initialize the Agent
# We allow imports like requests and bs4 so the agent can scrape if needed
self.agent = CodeAgent(
tools=[search_tool],
model=model,
additional_authorized_imports=["requests", "bs4", "datetime", "pandas", "math"],
max_steps=20, # Give it enough steps to think
verbosity_level=1
)
print("Agent initialized successfully.")
def __call__(self, question: str) -> str:
print(f"Agent received question: {question}")
try:
# Run the smolagent
# We cast to string in case the agent returns a non-string object
answer = self.agent.run(question)
print(f"Agent calculated answer: {answer}")
return str(answer)
except Exception as e:
print(f"Agent failed with error: {e}")
return "Error processing request"
# --- Logic to Run and Submit (Provided by Course Template) ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# Link to your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "https://huggingface.co/spaces/generic/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
print(f"Processing {i+1}/{len(questions_data)}: Task {task_id}")
if not task_id or question_text is None:
continue
try:
# THE AGENT CALL
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Final Agent Evaluation Runner (SmolAgents)")
gr.Markdown(
"""
**Instructions:**
1. Ensure `HF_TOKEN` is set in your Space Secrets.
2. Log in via the button below.
3. Click 'Run Evaluation'.
*Note: This process takes a few minutes as the agent thinks through 10-20 questions.*
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Status", lines=5, interactive=False)
results_table = gr.DataFrame(label="Results", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
demo.launch()