File size: 7,162 Bytes
7231c7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
import sys
import torch
from PIL import Image as PILImage
from PIL import ImageDraw, ImageFont
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor
from loguru import logger
import gradio as gr
import spaces
# Prefer local repo package over any site-installed "perceptron" (adjust if needed)
REPO_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
if REPO_ROOT not in sys.path:
sys.path.insert(0, REPO_ROOT)
from perceptron.tensorstream import VisionType
from perceptron.tensorstream.ops import tensor_stream_token_view, modality_mask
from perceptron.pointing.parser import extract_points
# Global model and processor
model = None
processor = None
device = None
dtype = None
config = None
def load_model():
global model, processor, device, dtype, config
hf_path = "PerceptronAI/Isaac-0.1"
logger.info(f"Loading processor and config from HF checkpoint: {hf_path}")
config = AutoConfig.from_pretrained(hf_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(hf_path, trust_remote_code=True, use_fast=False)
processor = AutoProcessor.from_pretrained(hf_path, trust_remote_code=True)
processor.tokenizer = tokenizer # Ensure tokenizer is set
logger.info(f"Loading AutoModelForCausalLM from HF checkpoint: {hf_path}")
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
model = model.to(device=device, dtype=dtype)
model.eval()
logger.info(f"Model loaded on {device} with dtype {dtype}")
@spaces.GPU(duration=120)
def init():
if model is None:
load_model()
return "Model loaded successfully"
def document_to_messages(document, vision_token="<image>"):
messages = []
images = []
for item in document:
itype = item.get("type")
if itype == "text":
content = item.get("content")
if content:
messages.append({"role": item.get("role", "user"), "content": content})
elif itype == "image":
if "content" in item and item["content"] is not None:
img = PILImage.open(item["content"]).convert("RGB")
images.append(img)
messages.append({"role": item.get("role", "user"), "content": vision_token})
return messages, images
def decode_tensor_stream(tensor_stream, tokenizer):
token_view = tensor_stream_token_view(tensor_stream)
mod = modality_mask(tensor_stream)
text_tokens = token_view[(mod != VisionType.image.value)]
decoded = tokenizer.decode(text_tokens[0] if len(text_tokens.shape) > 1 else text_tokens)
return decoded
def visualize_predictions(generated_text, image, output_path="prediction.jpeg"):
boxes = extract_points(generated_text, expected="box")
if not boxes:
logger.info("No bounding boxes found in the generated text")
image.save(output_path)
return output_path
img_width, img_height = image.size
img_with_boxes = image.copy()
draw = ImageDraw.Draw(img_with_boxes)
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 16)
except:
font = ImageFont.load_default()
colors = ["red", "green", "blue", "yellow", "magenta", "cyan", "orange", "purple"]
for idx, box in enumerate(boxes):
color = colors[idx % len(colors)]
norm_x1, norm_y1 = box.top_left.x, box.top_left.y
norm_x2, norm_y2 = box.bottom_right.x, box.bottom_right.y
x1 = int((norm_x1 / 1000.0) * img_width)
y1 = int((norm_y1 / 1000.0) * img_height)
x2 = int((norm_x2 / 1000.0) * img_width)
y2 = int((norm_y2 / 1000.0) * img_height)
x1 = max(0, min(x1, img_width - 1))
y1 = max(0, min(y1, img_height - 1))
x2 = max(0, min(x2, img_width - 1))
y2 = max(0, min(y2, img_height - 1))
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
if box.mention:
text_y = max(y1 - 20, 5)
text_bbox = draw.textbbox((x1, text_y), box.mention, font=font)
draw.rectangle(text_bbox, fill=color)
draw.text((x1, text_y), box.mention, fill="white", font=font)
img_with_boxes.save(output_path, "JPEG")
return output_path
@spaces.GPU(duration=120)
def generate_response(image, prompt):
if model is None:
return "Model not loaded. Click 'Load Model' first.", None
document = [
{"type": "text", "content": "<hint>BOX</hint>", "role": "user"},
{"type": "image", "content": image, "role": "user"},
{"type": "text", "content": prompt, "role": "user"},
]
messages, images = document_to_messages(document, vision_token=config.vision_token)
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=text, images=images, return_tensors="pt")
tensor_stream = inputs["tensor_stream"].to(device)
input_ids = inputs["input_ids"].to(device)
decoded_content = decode_tensor_stream(tensor_stream, processor.tokenizer)
with torch.no_grad():
generated_ids = model.generate(
tensor_stream=tensor_stream,
max_new_tokens=256,
do_sample=False,
pad_token_id=processor.tokenizer.eos_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
)
generated_text = processor.tokenizer.decode(generated_ids[0], skip_special_tokens=False)
if images:
vis_path = visualize_predictions(generated_text, images[0])
return generated_text, vis_path
else:
return generated_text, None
with gr.Blocks(title="HuggingFace Perceptron Demo") as demo:
gr.Markdown("# HuggingFace Perceptron Pipeline Demo")
gr.Markdown("Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)")
gr.Markdown("""
This demo shows how to use the Perceptron Isaac model for multimodal generation with text and images.
Upload an image and provide a prompt to generate responses with bounding box visualizations.
""")
with gr.Row():
load_btn = gr.Button("Load Model", variant="primary")
image_input = gr.Image(type="filepath", label="Upload Image", sources=["upload", "webcam"])
prompt_input = gr.Textbox(
label="Prompt",
value="Determine whether it is safe to cross the street. Look for signage and moving traffic.",
lines=3,
placeholder="Enter your prompt here..."
)
with gr.Row():
generate_btn = gr.Button("Generate Response", variant="primary")
generated_text = gr.Textbox(label="Generated Text", lines=10)
visualized_image = gr.Image(label="Visualized Predictions (with Bounding Boxes)")
load_btn.click(init, outputs=gr.Textbox(value="Loading...", visible=False))
generate_btn.click(generate_response, inputs=[image_input, prompt_input], outputs=[generated_text, visualized_image])
if __name__ == "__main__":
demo.launch() |