Ara Yeroyan commited on
Commit
caeff10
Β·
1 Parent(s): aafcd0d

add multi-agent system

Browse files
Files changed (1) hide show
  1. multi_agent_chatbot.py +1167 -0
multi_agent_chatbot.py ADDED
@@ -0,0 +1,1167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Multi-Agent RAG Chatbot using LangGraph
3
+
4
+ This system implements a 3-agent architecture:
5
+ 1. Main Agent: Handles conversation flow, follow-ups, and determines when to call RAG
6
+ 2. RAG Agent: Rewrites queries and applies filters for document retrieval
7
+ 3. Response Agent: Generates final answers from retrieved documents
8
+
9
+ Each agent has specialized prompts and responsibilities.
10
+ """
11
+
12
+ import os
13
+ import json
14
+ import time
15
+ import logging
16
+ from pathlib import Path
17
+ from datetime import datetime
18
+ from dataclasses import dataclass
19
+ from typing import Dict, List, Any, Optional, TypedDict
20
+
21
+
22
+ import re
23
+ from langchain_core.tools import tool
24
+ from langgraph.graph import StateGraph, END
25
+ from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
26
+ from langchain_core.prompts import ChatPromptTemplate
27
+
28
+
29
+ from src.pipeline import PipelineManager
30
+ from src.config.loader import load_config
31
+ from src.llm.adapters import get_llm_client
32
+
33
+
34
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
35
+ logger = logging.getLogger(__name__)
36
+
37
+
38
+ @dataclass
39
+ class QueryContext:
40
+ """Context extracted from conversation"""
41
+ has_district: bool = False
42
+ has_source: bool = False
43
+ has_year: bool = False
44
+ extracted_district: Optional[str] = None
45
+ extracted_source: Optional[str] = None
46
+ extracted_year: Optional[str] = None
47
+ ui_filters: Dict[str, List[str]] = None
48
+ confidence_score: float = 0.0
49
+ needs_follow_up: bool = False
50
+ follow_up_question: Optional[str] = None
51
+
52
+ class MultiAgentState(TypedDict):
53
+ """State for the multi-agent conversation flow"""
54
+ conversation_id: str
55
+ messages: List[Any]
56
+ current_query: str
57
+ query_context: Optional[QueryContext]
58
+ rag_query: Optional[str]
59
+ rag_filters: Optional[Dict[str, Any]]
60
+ retrieved_documents: Optional[List[Any]]
61
+ final_response: Optional[str]
62
+ agent_logs: List[str]
63
+ conversation_context: Dict[str, Any]
64
+ session_start_time: float
65
+ last_ai_message_time: float
66
+
67
+ class MultiAgentRAGChatbot:
68
+ """Multi-agent RAG chatbot with specialized agents"""
69
+
70
+ def __init__(self, config_path: str = "auditqa/config/settings.yaml"):
71
+ """Initialize the multi-agent chatbot"""
72
+ self.config = load_config(config_path)
73
+
74
+ # Get LLM provider from config
75
+ reader_config = self.config.get("reader", {})
76
+ default_type = reader_config.get("default_type", "INF_PROVIDERS")
77
+ provider_name = default_type.lower()
78
+
79
+ self.llm_adapter = get_llm_client(provider_name, self.config)
80
+
81
+ # Create a simple wrapper for LangChain compatibility
82
+ class LLMWrapper:
83
+ def __init__(self, adapter):
84
+ self.adapter = adapter
85
+
86
+ def invoke(self, messages):
87
+ # Convert LangChain messages to the format expected by the adapter
88
+ if isinstance(messages, list):
89
+ formatted_messages = []
90
+ for msg in messages:
91
+ if hasattr(msg, 'content'):
92
+ role = "user" if msg.__class__.__name__ == "HumanMessage" else "assistant"
93
+ formatted_messages.append({"role": role, "content": msg.content})
94
+ else:
95
+ formatted_messages.append({"role": "user", "content": str(msg)})
96
+ else:
97
+ formatted_messages = [{"role": "user", "content": str(messages)}]
98
+
99
+ # Use the adapter to get response
100
+ response = self.adapter.generate(formatted_messages)
101
+
102
+ # Return a mock response object
103
+ class MockResponse:
104
+ def __init__(self, content):
105
+ self.content = content
106
+
107
+ return MockResponse(response.content)
108
+
109
+ self.llm = LLMWrapper(self.llm_adapter)
110
+
111
+ # Initialize pipeline manager early to load models
112
+ logger.info("πŸ”„ Initializing pipeline manager and loading models...")
113
+ self.pipeline_manager = PipelineManager(self.config)
114
+ logger.info("βœ… Pipeline manager initialized and models loaded")
115
+
116
+ # Connect to vector store
117
+ logger.info("πŸ”„ Connecting to vector store...")
118
+ if not self.pipeline_manager.connect_vectorstore():
119
+ logger.error("❌ Failed to connect to vector store")
120
+ raise RuntimeError("Vector store connection failed")
121
+ logger.info("βœ… Vector store connected successfully")
122
+
123
+ # Load dynamic data
124
+ self._load_dynamic_data()
125
+
126
+ # Build the multi-agent graph
127
+ self.graph = self._build_graph()
128
+
129
+ # Conversations directory
130
+ self.conversations_dir = Path("conversations")
131
+ self.conversations_dir.mkdir(exist_ok=True)
132
+
133
+ logger.info("πŸ€– Multi-Agent RAG Chatbot initialized")
134
+
135
+ def _load_dynamic_data(self):
136
+ """Load dynamic data from filter_options.json and add_district_metadata.py"""
137
+ # Load filter options
138
+ try:
139
+ fo = Path("filter_options.json")
140
+ if fo.exists():
141
+ with open(fo) as f:
142
+ data = json.load(f)
143
+ self.year_whitelist = [str(y).strip() for y in data.get("years", [])]
144
+ self.source_whitelist = [str(s).strip() for s in data.get("sources", [])]
145
+ self.district_whitelist = [str(d).strip() for d in data.get("districts", [])]
146
+ else:
147
+ # Fallback to default values
148
+ self.year_whitelist = ['2018', '2019', '2020', '2021', '2022', '2023', '2024']
149
+ self.source_whitelist = ['Consolidated', 'Local Government', 'Ministry, Department and Agency']
150
+ self.district_whitelist = ['Kampala', 'Gulu', 'Kalangala']
151
+ except Exception as e:
152
+ logger.warning(f"Could not load filter options: {e}")
153
+ self.year_whitelist = ['2018', '2019', '2020', '2021', '2022', '2023', '2024']
154
+ self.source_whitelist = ['Consolidated', 'Local Government', 'Ministry, Department and Agency']
155
+ self.district_whitelist = ['Kampala', 'Gulu', 'Kalangala']
156
+
157
+ # Enrich district list from add_district_metadata.py
158
+ try:
159
+ from add_district_metadata import DistrictMetadataProcessor
160
+ proc = DistrictMetadataProcessor()
161
+ names = set()
162
+ for key, mapping in proc.district_mappings.items():
163
+ if getattr(mapping, 'is_district', True):
164
+ names.add(mapping.name)
165
+ if names:
166
+ merged = list(self.district_whitelist)
167
+ for n in sorted(names):
168
+ if n not in merged:
169
+ merged.append(n)
170
+ self.district_whitelist = merged
171
+ logger.info(f"🧭 District whitelist enriched: {len(self.district_whitelist)} entries")
172
+ except Exception as e:
173
+ logger.info(f"ℹ️ Could not enrich districts: {e}")
174
+
175
+ # Calculate current year dynamically
176
+ self.current_year = str(datetime.now().year)
177
+ self.previous_year = str(datetime.now().year - 1)
178
+
179
+ # Log the actual filter values for debugging
180
+ logger.info(f"πŸ“Š ACTUAL FILTER VALUES:")
181
+ logger.info(f" Years: {self.year_whitelist}")
182
+ logger.info(f" Sources: {self.source_whitelist}")
183
+ logger.info(f" Districts: {len(self.district_whitelist)} districts (first 10: {self.district_whitelist[:10]})")
184
+
185
+ def _build_graph(self) -> StateGraph:
186
+ """Build the multi-agent LangGraph"""
187
+ graph = StateGraph(MultiAgentState)
188
+
189
+ # Add nodes for each agent
190
+ graph.add_node("main_agent", self._main_agent)
191
+ graph.add_node("rag_agent", self._rag_agent)
192
+ graph.add_node("response_agent", self._response_agent)
193
+
194
+ # Define the flow
195
+ graph.set_entry_point("main_agent")
196
+
197
+ # Main agent decides next step
198
+ graph.add_conditional_edges(
199
+ "main_agent",
200
+ self._should_call_rag,
201
+ {
202
+ "follow_up": END,
203
+ "call_rag": "rag_agent"
204
+ }
205
+ )
206
+
207
+ # RAG agent calls response agent
208
+ graph.add_edge("rag_agent", "response_agent")
209
+
210
+ # Response agent returns to main agent for potential follow-ups
211
+ graph.add_edge("response_agent", "main_agent")
212
+
213
+ return graph.compile()
214
+
215
+ def _should_call_rag(self, state: MultiAgentState) -> str:
216
+ """Determine if we should call RAG or ask follow-up"""
217
+ # If we already have a final response (from response agent), end
218
+ if state.get("final_response"):
219
+ return "follow_up"
220
+
221
+ context = state["query_context"]
222
+ if context and context.needs_follow_up:
223
+ return "follow_up"
224
+ return "call_rag"
225
+
226
+ def _main_agent(self, state: MultiAgentState) -> MultiAgentState:
227
+ """Main Agent: Handles conversation flow and follow-ups"""
228
+ logger.info("🎯 MAIN AGENT: Starting analysis")
229
+
230
+ # If we already have a final response from response agent, end gracefully
231
+ if state.get("final_response"):
232
+ logger.info("🎯 MAIN AGENT: Final response already exists, ending conversation flow")
233
+ return state
234
+
235
+ query = state["current_query"]
236
+ messages = state["messages"]
237
+
238
+ logger.info(f"🎯 MAIN AGENT: Extracting UI filters from query")
239
+ ui_filters = self._extract_ui_filters(query)
240
+ logger.info(f"🎯 MAIN AGENT: UI filters extracted: {ui_filters}")
241
+
242
+ # Analyze query context
243
+ logger.info(f"🎯 MAIN AGENT: Analyzing query context")
244
+ context = self._analyze_query_context(query, messages, ui_filters)
245
+
246
+ # Log agent decision
247
+ state["agent_logs"].append(f"MAIN AGENT: Context analyzed - district={context.has_district}, source={context.has_source}, year={context.has_year}")
248
+ logger.info(f"🎯 MAIN AGENT: Context analysis complete - district={context.has_district}, source={context.has_source}, year={context.has_year}")
249
+
250
+ # Store context
251
+ state["query_context"] = context
252
+
253
+ # If follow-up needed, generate response
254
+ if context.needs_follow_up:
255
+ logger.info(f"🎯 MAIN AGENT: Follow-up needed, generating question")
256
+ response = context.follow_up_question
257
+ state["final_response"] = response
258
+ state["last_ai_message_time"] = time.time()
259
+ logger.info(f"🎯 MAIN AGENT: Follow-up question generated: {response[:100]}...")
260
+ else:
261
+ logger.info("🎯 MAIN AGENT: No follow-up needed, proceeding to RAG")
262
+
263
+ return state
264
+
265
+ def _rag_agent(self, state: MultiAgentState) -> MultiAgentState:
266
+ """RAG Agent: Rewrites queries and applies filters"""
267
+ logger.info("πŸ” RAG AGENT: Starting query rewriting and filter preparation")
268
+
269
+ context = state["query_context"]
270
+ messages = state["messages"]
271
+
272
+ logger.info(f"πŸ” RAG AGENT: Context received - district={context.has_district}, source={context.has_source}, year={context.has_year}")
273
+
274
+ # Rewrite query for RAG
275
+ logger.info(f"πŸ” RAG AGENT: Rewriting query for optimal retrieval")
276
+ rag_query = self._rewrite_query_for_rag(messages, context)
277
+ logger.info(f"πŸ” RAG AGENT: Query rewritten: '{rag_query}'")
278
+
279
+ # Build filters
280
+ logger.info(f"πŸ” RAG AGENT: Building filters from context")
281
+ filters = self._build_filters(context)
282
+ logger.info(f"πŸ” RAG AGENT: Filters built: {filters}")
283
+
284
+ # Log RAG preparation
285
+ state["agent_logs"].append(f"RAG AGENT: Query='{rag_query}', Filters={filters}")
286
+
287
+ # Store for response agent
288
+ state["rag_query"] = rag_query
289
+ state["rag_filters"] = filters
290
+
291
+ logger.info(f"πŸ” RAG AGENT: Preparation complete, ready for retrieval")
292
+
293
+ return state
294
+
295
+ def _response_agent(self, state: MultiAgentState) -> MultiAgentState:
296
+ """Response Agent: Generates final answer from retrieved documents"""
297
+ logger.info("πŸ“ RESPONSE AGENT: Starting document retrieval and answer generation")
298
+
299
+ rag_query = state["rag_query"]
300
+ filters = state["rag_filters"]
301
+
302
+ logger.info(f"πŸ“ RESPONSE AGENT: Starting RAG retrieval with query: '{rag_query}'")
303
+ logger.info(f"πŸ“ RESPONSE AGENT: Using filters: {filters}")
304
+
305
+ # Perform RAG retrieval
306
+ logger.info(f"πŸ“ RESPONSE AGENT: Calling pipeline manager for retrieval")
307
+ logger.info(f"πŸ” ACTUAL RAG QUERY: '{rag_query}'")
308
+ logger.info(f"πŸ” ACTUAL FILTERS: {filters}")
309
+ try:
310
+ # Extract filenames from filters if present
311
+ filenames = filters.get("filenames") if filters else None
312
+
313
+ result = self.pipeline_manager.run(
314
+ query=rag_query,
315
+ sources=filters.get("sources") if filters else None,
316
+ auto_infer_filters=False,
317
+ filters=filters if filters else None
318
+ )
319
+
320
+ logger.info(f"πŸ“ RESPONSE AGENT: RAG retrieval completed - {len(result.sources)} documents retrieved")
321
+ logger.info(f"πŸ” RETRIEVAL DEBUG: Result type: {type(result)}")
322
+ logger.info(f"πŸ” RETRIEVAL DEBUG: Result sources type: {type(result.sources)}")
323
+ # logger.info(f"πŸ” RETRIEVAL DEBUG: Result metadata: {getattr(result, 'metadata', 'No metadata')}")
324
+
325
+ if len(result.sources) == 0:
326
+ logger.warning(f"⚠️ NO DOCUMENTS RETRIEVED: Query='{rag_query}', Filters={filters}")
327
+ logger.warning(f"⚠️ RETRIEVAL DEBUG: This could be due to:")
328
+ logger.warning(f" - Query too specific for available documents")
329
+ logger.warning(f" - Filters too restrictive")
330
+ logger.warning(f" - Vector store connection issues")
331
+ logger.warning(f" - Embedding model issues")
332
+ else:
333
+ logger.info(f"βœ… DOCUMENTS RETRIEVED: {len(result.sources)} documents found")
334
+ for i, doc in enumerate(result.sources[:3]): # Log first 3 docs
335
+ logger.info(f" Doc {i+1}: {getattr(doc, 'metadata', {}).get('filename', 'Unknown')[:50]}...")
336
+
337
+ state["retrieved_documents"] = result.sources
338
+ state["agent_logs"].append(f"RESPONSE AGENT: Retrieved {len(result.sources)} documents")
339
+
340
+ # Check highest similarity score
341
+ highest_score = 0.0
342
+ if result.sources:
343
+ # Check reranked_score first (more accurate), fallback to original_score
344
+ for doc in result.sources:
345
+ score = doc.metadata.get('reranked_score') or doc.metadata.get('original_score', 0.0)
346
+ if score > highest_score:
347
+ highest_score = score
348
+
349
+ logger.info(f"πŸ“ RESPONSE AGENT: Highest similarity score: {highest_score:.4f}")
350
+
351
+ # If highest score is too low, don't use retrieved documents
352
+ if highest_score <= 0.15:
353
+ logger.warning(f"⚠️ RESPONSE AGENT: Low similarity score ({highest_score:.4f} <= 0.15), using LLM knowledge only")
354
+ response = self._generate_conversational_response_without_docs(
355
+ state["current_query"],
356
+ state["messages"]
357
+ )
358
+ else:
359
+ # Generate conversational response with documents
360
+ logger.info(f"πŸ“ RESPONSE AGENT: Generating conversational response from {len(result.sources)} documents")
361
+ response = self._generate_conversational_response(
362
+ state["current_query"],
363
+ result.sources,
364
+ result.answer,
365
+ state["messages"]
366
+ )
367
+
368
+ logger.info(f"πŸ“ RESPONSE AGENT: Response generated: {response[:100]}...")
369
+
370
+ state["final_response"] = response
371
+ state["last_ai_message_time"] = time.time()
372
+
373
+ logger.info(f"πŸ“ RESPONSE AGENT: Answer generation complete")
374
+
375
+ except Exception as e:
376
+ logger.error(f"❌ RESPONSE AGENT ERROR: {e}")
377
+ state["final_response"] = "I apologize, but I encountered an error while retrieving information. Please try again."
378
+ state["last_ai_message_time"] = time.time()
379
+
380
+ return state
381
+
382
+ def _extract_ui_filters(self, query: str) -> Dict[str, List[str]]:
383
+ """Extract UI filters from query"""
384
+ filters = {}
385
+
386
+ # Look for FILTER CONTEXT in query
387
+ if "FILTER CONTEXT:" in query:
388
+ # Extract the entire filter section (until USER QUERY: or end of query)
389
+ filter_section = query.split("FILTER CONTEXT:")[1]
390
+ if "USER QUERY:" in filter_section:
391
+ filter_section = filter_section.split("USER QUERY:")[0]
392
+ filter_section = filter_section.strip()
393
+
394
+ # Parse sources
395
+ if "Sources:" in filter_section:
396
+ sources_line = [line for line in filter_section.split('\n') if line.strip().startswith('Sources:')][0]
397
+ sources_str = sources_line.split("Sources:")[1].strip()
398
+ if sources_str and sources_str != "None":
399
+ filters["sources"] = [s.strip() for s in sources_str.split(",")]
400
+
401
+ # Parse years
402
+ if "Years:" in filter_section:
403
+ years_line = [line for line in filter_section.split('\n') if line.strip().startswith('Years:')][0]
404
+ years_str = years_line.split("Years:")[1].strip()
405
+ if years_str and years_str != "None":
406
+ filters["years"] = [y.strip() for y in years_str.split(",")]
407
+
408
+ # Parse districts
409
+ if "Districts:" in filter_section:
410
+ districts_line = [line for line in filter_section.split('\n') if line.strip().startswith('Districts:')][0]
411
+ districts_str = districts_line.split("Districts:")[1].strip()
412
+ if districts_str and districts_str != "None":
413
+ filters["districts"] = [d.strip() for d in districts_str.split(",")]
414
+
415
+ # Parse filenames
416
+ if "Filenames:" in filter_section:
417
+ filenames_line = [line for line in filter_section.split('\n') if line.strip().startswith('Filenames:')][0]
418
+ filenames_str = filenames_line.split("Filenames:")[1].strip()
419
+ if filenames_str and filenames_str != "None":
420
+ filters["filenames"] = [f.strip() for f in filenames_str.split(",")]
421
+
422
+ return filters
423
+
424
+ def _analyze_query_context(self, query: str, messages: List[Any], ui_filters: Dict[str, List[str]]) -> QueryContext:
425
+ """Analyze query context using LLM"""
426
+ logger.info(f"πŸ” QUERY ANALYSIS: '{query[:50]}...' | UI filters: {ui_filters} | Messages: {len(messages)}")
427
+
428
+ # Build conversation context
429
+ conversation_context = ""
430
+ for i, msg in enumerate(messages[-6:]): # Last 6 messages
431
+ if isinstance(msg, HumanMessage):
432
+ conversation_context += f"User: {msg.content}\n"
433
+ elif isinstance(msg, AIMessage):
434
+ conversation_context += f"Assistant: {msg.content}\n"
435
+
436
+ # Create analysis prompt
437
+ analysis_prompt = ChatPromptTemplate.from_messages([
438
+ SystemMessage(content=f"""You are the Main Agent in an advanced multi-agent RAG system for audit report analysis.
439
+
440
+ 🎯 PRIMARY GOAL: Intelligently analyze user queries and determine the optimal conversation flow, whether that's answering directly, asking follow-ups, or proceeding to RAG retrieval.
441
+
442
+ 🧠 INTELLIGENCE LEVEL: You are a sophisticated conversational AI that can handle any type of user interaction - from greetings to complex audit queries.
443
+
444
+ πŸ“Š YOUR EXPERTISE: You specialize in analyzing audit reports from various sources (Local Government, Ministry, Hospital, etc.) across different years and districts in Uganda.
445
+
446
+ πŸ” AVAILABLE FILTERS:
447
+ - Years: {', '.join(self.year_whitelist)}
448
+ - Current year: {self.current_year}, Previous year: {self.previous_year}
449
+ - Sources: {', '.join(self.source_whitelist)}
450
+ - Districts: {', '.join(self.district_whitelist[:50])}... (and {len(self.district_whitelist)-50} more)
451
+
452
+ πŸŽ›οΈ UI FILTERS PROVIDED: {ui_filters}
453
+
454
+ πŸ“‹ UI FILTER HANDLING:
455
+ - If UI filters contain multiple values (e.g., districts: ['Lwengo', 'Kiboga']), extract ALL values
456
+ - For multiple districts: extract each district separately and validate each one
457
+ - For multiple years: extract each year separately and validate each one
458
+ - For multiple sources: extract each source separately and validate each one
459
+ - UI filters take PRIORITY over conversation context - use them first
460
+
461
+ 🧭 CONVERSATION FLOW INTELLIGENCE:
462
+
463
+ 1. **GREETINGS & GENERAL CHAT**:
464
+ - If user greets you ("Hi", "Hello", "How are you"), respond warmly and guide them to audit-related questions
465
+ - Example: "Hello! I'm here to help you analyze audit reports. What would you like to know about budget allocations, expenditures, or audit findings?"
466
+
467
+ 2. **EDGE CASES**:
468
+ - Handle "What can you do?", "Help", "I don't know what to ask" with helpful guidance
469
+ - Example: "I can help you analyze audit reports! Try asking about budget allocations, salary management, PDM implementation, or any specific audit findings."
470
+
471
+ 3. **AUDIT QUERIES**:
472
+ - Extract ONLY values that EXACTLY match the available lists above
473
+ - DO NOT hallucinate or infer values not in the lists
474
+ - If user mentions "salary payroll management" - this is NOT a valid source filter
475
+
476
+ **YEAR EXTRACTION**:
477
+ - If user mentions "2023" and it's in the years list - extract "2023"
478
+ - If user mentions "2022 / 23" - extract ["2022", "2023"] (as a JSON array)
479
+ - If user mentions "2022-2023" - extract ["2022", "2023"] (as a JSON array)
480
+ - If user mentions "latest couple of years" - extract the 2 most recent years from available data as JSON array
481
+ - Always return years as JSON arrays when multiple years are mentioned
482
+
483
+ **DISTRICT EXTRACTION**:
484
+ - If user mentions "Kampala" and it's in the districts list - extract "Kampala"
485
+ - If user mentions "Pader District" - extract "Pader" (remove "District" suffix)
486
+ - If user mentions "Lwengo, Kiboga and Namutumba" - extract ["Lwengo", "Kiboga", "Namutumba"] (as JSON array)
487
+ - If user mentions "Lwengo District and Kiboga District" - extract ["Lwengo", "Kiboga"] (as JSON array, remove "District" suffix)
488
+ - Always return districts as JSON arrays when multiple districts are mentioned
489
+ - If no exact matches found, set extracted values to null
490
+
491
+ 4. **FILENAME FILTERING (MUTUALLY EXCLUSIVE)**:
492
+ - If UI provides filenames filter - ONLY use that, ignore all other filters (year, district, source)
493
+ - With filenames filter, no follow-ups needed - proceed directly to RAG
494
+ - When filenames are specified, skip filter inference entirely
495
+
496
+ 5. **HALLUCINATION PREVENTION**:
497
+ - If user asks about a specific report but NO filename is selected in UI and NONE is extracted from conversation - DO NOT hallucinate
498
+ - Clearly state: "I don't have any specific report selected. Could you please select a report from the list or tell me which report you'd like to analyze?"
499
+ - DO NOT pretend to know which report they mean
500
+ - DO NOT infer reports from context alone - only use explicitly mentioned reports
501
+
502
+ 6. **CONVERSATION CONTEXT AWARENESS**:
503
+ - ALWAYS consider the full conversation context when extracting filters
504
+ - If district was mentioned in previous messages, include it in current analysis
505
+ - If year was mentioned in previous messages, include it in current analysis
506
+ - If source was mentioned in previous messages, include it in current analysis
507
+ - Example: If conversation shows "User: Tell me about Pader District" then "User: 2023", extract both: district="Pader" and year="2023"
508
+
509
+ 5. **SMART FOLLOW-UP STRATEGY**:
510
+ - NEVER ask the same question twice in a row
511
+ - If user provides source info, ask for year or district next
512
+ - If user provides year info, ask for source or district next
513
+ - If user provides district info, ask for year or source next
514
+ - If user provides 2+ pieces of info, proceed to RAG instead of asking more
515
+ - Make follow-ups conversational and contextual, not robotic
516
+
517
+ 5. **DYNAMIC FOLLOW-UP EXAMPLES**:
518
+ - Budget queries: "What year are you interested in?" or "Which department - Local Government or Ministry?"
519
+ - PDM queries: "Which district are you interested in?" or "What year?"
520
+ - General queries: "Could you be more specific about what you'd like to know?"
521
+
522
+ 🎯 DECISION LOGIC:
523
+ - If query is a greeting/general chat β†’ needs_follow_up: true, provide helpful guidance
524
+ - If query has 2+ pieces of info β†’ needs_follow_up: false, proceed to RAG
525
+ - If query has 1 piece of info β†’ needs_follow_up: true, ask for missing piece
526
+ - If query has 0 pieces of info β†’ needs_follow_up: true, ask for clarification
527
+
528
+ RESPOND WITH JSON ONLY:
529
+ {{
530
+ "has_district": boolean,
531
+ "has_source": boolean,
532
+ "has_year": boolean,
533
+ "extracted_district": "single district name or JSON array of districts or null",
534
+ "extracted_source": "single source name or JSON array of sources or null",
535
+ "extracted_year": "single year or JSON array of years or null",
536
+ "confidence_score": 0.0-1.0,
537
+ "needs_follow_up": boolean,
538
+ "follow_up_question": "conversational question or helpful guidance or null"
539
+ }}"""),
540
+ HumanMessage(content=f"""Query: {query}
541
+
542
+ Conversation Context:
543
+ {conversation_context}
544
+
545
+ CRITICAL: You MUST analyze the FULL conversation context above, not just the current query.
546
+ - If ANY district was mentioned in previous messages, extract it
547
+ - If ANY year was mentioned in previous messages, extract it
548
+ - If ANY source was mentioned in previous messages, extract it
549
+ - Combine information from ALL messages in the conversation
550
+
551
+ Analyze this query using ONLY the exact values provided above:""")
552
+ ])
553
+
554
+ try:
555
+ response = self.llm.invoke(analysis_prompt.format_messages())
556
+
557
+ # Clean the response to extract JSON
558
+ content = response.content.strip()
559
+ if content.startswith("```json"):
560
+ # Remove markdown formatting
561
+ content = content.replace("```json", "").replace("```", "").strip()
562
+ elif content.startswith("```"):
563
+ # Remove generic markdown formatting
564
+ content = content.replace("```", "").strip()
565
+
566
+ # Clean and parse JSON with better error handling
567
+ try:
568
+ # Remove comments (// and /* */) from JSON
569
+ import re
570
+ # Remove single-line comments
571
+ content = re.sub(r'//.*?$', '', content, flags=re.MULTILINE)
572
+ # Remove multi-line comments
573
+ content = re.sub(r'/\*.*?\*/', '', content, flags=re.DOTALL)
574
+
575
+ analysis = json.loads(content)
576
+ logger.info(f"πŸ” QUERY ANALYSIS: βœ… Parsed successfully")
577
+ except json.JSONDecodeError as e:
578
+ logger.error(f"❌ JSON parsing failed: {e}")
579
+ logger.error(f"❌ Raw content: {content[:200]}...")
580
+
581
+ # Try to extract JSON from text if embedded
582
+ import re
583
+ json_match = re.search(r'\{.*\}', content, re.DOTALL)
584
+ if json_match:
585
+ try:
586
+ # Clean the extracted JSON
587
+ cleaned_json = json_match.group()
588
+ cleaned_json = re.sub(r'//.*?$', '', cleaned_json, flags=re.MULTILINE)
589
+ cleaned_json = re.sub(r'/\*.*?\*/', '', cleaned_json, flags=re.DOTALL)
590
+ analysis = json.loads(cleaned_json)
591
+ logger.info(f"πŸ” QUERY ANALYSIS: βœ… Extracted and cleaned JSON from text")
592
+ except json.JSONDecodeError as e2:
593
+ logger.error(f"❌ Failed to extract JSON from text: {e2}")
594
+ # Return fallback context
595
+ context = QueryContext(
596
+ has_district=False,
597
+ has_source=False,
598
+ has_year=False,
599
+ extracted_district=None,
600
+ extracted_source=None,
601
+ extracted_year=None,
602
+ confidence_score=0.0,
603
+ needs_follow_up=True,
604
+ follow_up_question="I apologize, but I'm having trouble processing your request. Could you please rephrase it or ask for help?"
605
+ )
606
+ return context
607
+ else:
608
+ # Return fallback context
609
+ context = QueryContext(
610
+ has_district=False,
611
+ has_source=False,
612
+ has_year=False,
613
+ extracted_district=None,
614
+ extracted_source=None,
615
+ extracted_year=None,
616
+ confidence_score=0.0,
617
+ needs_follow_up=True,
618
+ follow_up_question="I apologize, but I'm having trouble processing your request. Could you please rephrase it or ask for help?"
619
+ )
620
+ return context
621
+
622
+ # Validate extracted values against whitelists
623
+ extracted_district = analysis.get("extracted_district")
624
+ extracted_source = analysis.get("extracted_source")
625
+ extracted_year = analysis.get("extracted_year")
626
+
627
+ logger.info(f"πŸ” QUERY ANALYSIS: Raw extracted values - district: {extracted_district}, source: {extracted_source}, year: {extracted_year}")
628
+
629
+ # Validate district (handle both single values and arrays)
630
+ if extracted_district:
631
+ if isinstance(extracted_district, list):
632
+ # Validate each district in the array
633
+ valid_districts = []
634
+ for district in extracted_district:
635
+ if district in self.district_whitelist:
636
+ valid_districts.append(district)
637
+ else:
638
+ # Try removing "District" suffix
639
+ district_name = district.replace(" District", "").replace(" district", "")
640
+ if district_name in self.district_whitelist:
641
+ valid_districts.append(district_name)
642
+
643
+ if valid_districts:
644
+ extracted_district = valid_districts[0] if len(valid_districts) == 1 else valid_districts
645
+ logger.info(f"πŸ” QUERY ANALYSIS: Extracted districts: {extracted_district}")
646
+ else:
647
+ logger.warning(f"⚠️ No valid districts found in: '{extracted_district}'")
648
+ extracted_district = None
649
+ else:
650
+ # Single district validation
651
+ if extracted_district not in self.district_whitelist:
652
+ # Try removing "District" suffix
653
+ district_name = extracted_district.replace(" District", "").replace(" district", "")
654
+ if district_name in self.district_whitelist:
655
+ logger.info(f"πŸ” QUERY ANALYSIS: Normalized district '{extracted_district}' to '{district_name}'")
656
+ extracted_district = district_name
657
+ else:
658
+ logger.warning(f"⚠️ Invalid district extracted: '{extracted_district}' not in whitelist")
659
+ extracted_district = None
660
+
661
+ # Validate source (handle both single values and arrays)
662
+ if extracted_source:
663
+ if isinstance(extracted_source, list):
664
+ # Validate each source in the array
665
+ valid_sources = []
666
+ for source in extracted_source:
667
+ if source in self.source_whitelist:
668
+ valid_sources.append(source)
669
+ else:
670
+ logger.warning(f"⚠️ Invalid source in array: '{source}' not in whitelist")
671
+
672
+ if valid_sources:
673
+ extracted_source = valid_sources[0] if len(valid_sources) == 1 else valid_sources
674
+ logger.info(f"πŸ” QUERY ANALYSIS: Extracted sources: {extracted_source}")
675
+ else:
676
+ logger.warning(f"⚠️ No valid sources found in: '{extracted_source}'")
677
+ extracted_source = None
678
+ else:
679
+ # Single source validation
680
+ if extracted_source not in self.source_whitelist:
681
+ logger.warning(f"⚠️ Invalid source extracted: '{extracted_source}' not in whitelist")
682
+ extracted_source = None
683
+
684
+ # Validate year (handle both single values and arrays)
685
+ if extracted_year:
686
+ if isinstance(extracted_year, list):
687
+ # Validate each year in the array
688
+ valid_years = []
689
+ for year in extracted_year:
690
+ year_str = str(year)
691
+ if year_str in self.year_whitelist:
692
+ valid_years.append(year_str)
693
+
694
+ if valid_years:
695
+ extracted_year = valid_years[0] if len(valid_years) == 1 else valid_years
696
+ logger.info(f"πŸ” QUERY ANALYSIS: Extracted years: {extracted_year}")
697
+ else:
698
+ logger.warning(f"⚠️ No valid years found in: '{extracted_year}'")
699
+ extracted_year = None
700
+ else:
701
+ # Single year validation
702
+ year_str = str(extracted_year)
703
+ if year_str not in self.year_whitelist:
704
+ logger.warning(f"⚠️ Invalid year extracted: '{extracted_year}' not in whitelist")
705
+ extracted_year = None
706
+ else:
707
+ extracted_year = year_str
708
+
709
+ logger.info(f"πŸ” QUERY ANALYSIS: Validated values - district: {extracted_district}, source: {extracted_source}, year: {extracted_year}")
710
+
711
+ # Create QueryContext object
712
+ context = QueryContext(
713
+ has_district=bool(extracted_district),
714
+ has_source=bool(extracted_source),
715
+ has_year=bool(extracted_year),
716
+ extracted_district=extracted_district,
717
+ extracted_source=extracted_source,
718
+ extracted_year=extracted_year,
719
+ ui_filters=ui_filters,
720
+ confidence_score=analysis.get("confidence_score", 0.0),
721
+ needs_follow_up=analysis.get("needs_follow_up", False),
722
+ follow_up_question=analysis.get("follow_up_question")
723
+ )
724
+
725
+ logger.info(f"πŸ” QUERY ANALYSIS: Analysis complete - needs_follow_up: {context.needs_follow_up}, confidence: {context.confidence_score}")
726
+
727
+ # If filenames are provided in UI, skip follow-ups and proceed to RAG
728
+ if ui_filters and ui_filters.get("filenames"):
729
+ logger.info(f"πŸ” QUERY ANALYSIS: Filenames provided, skipping follow-ups, proceeding to RAG")
730
+ context.needs_follow_up = False
731
+ context.follow_up_question = None
732
+
733
+ # Additional smart decision logic
734
+ if context.needs_follow_up:
735
+ # Check if we have enough information to proceed
736
+ info_count = sum([
737
+ bool(context.extracted_district),
738
+ bool(context.extracted_source),
739
+ bool(context.extracted_year)
740
+ ])
741
+
742
+ # Check if user is asking for more info vs providing it
743
+ query_lower = query.lower()
744
+ is_requesting_info = any(phrase in query_lower for phrase in [
745
+ "please provide", "could you provide", "can you provide",
746
+ "what is", "what are", "how much", "which", "what year",
747
+ "what district", "what source", "tell me about"
748
+ ])
749
+
750
+ # If we have 2+ pieces of info AND user is not requesting more info, proceed to RAG
751
+ if info_count >= 2 and not is_requesting_info:
752
+ logger.info(f"πŸ” QUERY ANALYSIS: Smart override - have {info_count} pieces of info and user not requesting more, proceeding to RAG")
753
+ context.needs_follow_up = False
754
+ context.follow_up_question = None
755
+ elif info_count >= 2 and is_requesting_info:
756
+ logger.info(f"πŸ” QUERY ANALYSIS: User requesting more info despite having {info_count} pieces, proceeding to RAG with comprehensive answer")
757
+ context.needs_follow_up = False
758
+ context.follow_up_question = None
759
+
760
+ return context
761
+
762
+ except Exception as e:
763
+ logger.error(f"❌ Query analysis failed: {e}")
764
+ # Fallback: proceed with RAG
765
+ return QueryContext(
766
+ has_district=bool(ui_filters.get("districts")),
767
+ has_source=bool(ui_filters.get("sources")),
768
+ has_year=bool(ui_filters.get("years")),
769
+ ui_filters=ui_filters,
770
+ confidence_score=0.5,
771
+ needs_follow_up=False
772
+ )
773
+
774
+ def _rewrite_query_for_rag(self, messages: List[Any], context: QueryContext) -> str:
775
+ """Rewrite query for optimal RAG retrieval"""
776
+ logger.info("πŸ”„ QUERY REWRITING: Starting query rewrite for RAG")
777
+ logger.info(f"πŸ”„ QUERY REWRITING: Processing {len(messages)} messages")
778
+
779
+ # Build conversation context
780
+ logger.info(f"πŸ”„ QUERY REWRITING: Building conversation context from last 6 messages")
781
+ conversation_lines = []
782
+ for i, msg in enumerate(messages[-6:]):
783
+ if isinstance(msg, HumanMessage):
784
+ conversation_lines.append(f"User: {msg.content}")
785
+ logger.info(f"πŸ”„ QUERY REWRITING: Message {i+1}: User - {msg.content[:50]}...")
786
+ elif isinstance(msg, AIMessage):
787
+ conversation_lines.append(f"Assistant: {msg.content}")
788
+ logger.info(f"πŸ”„ QUERY REWRITING: Message {i+1}: Assistant - {msg.content[:50]}...")
789
+
790
+ convo_text = "\n".join(conversation_lines)
791
+ logger.info(f"πŸ”„ QUERY REWRITING: Conversation context built ({len(convo_text)} chars)")
792
+
793
+ # Create rewrite prompt
794
+ rewrite_prompt = ChatPromptTemplate.from_messages([
795
+ SystemMessage(content=f"""You are a query rewriter for RAG retrieval.
796
+
797
+ GOAL: Create the best possible search query for document retrieval.
798
+
799
+ CRITICAL RULES:
800
+ 1. Focus on the core information need from the conversation
801
+ 2. Remove meta-verbs like "summarize", "list", "compare", "how much", "what" - keep the content focus
802
+ 3. DO NOT include filter details (years, districts, sources) - these are applied separately as filters
803
+ 4. DO NOT include specific years, district names, or source types in the query
804
+ 5. Output ONE clear sentence suitable for vector search
805
+ 6. Keep it generic and focused on the topic/subject matter
806
+
807
+ EXAMPLES:
808
+ - "What are the top challenges in budget allocation?" β†’ "budget allocation challenges"
809
+ - "How were PDM administrative costs utilized in 2023?" β†’ "PDM administrative costs utilization"
810
+ - "Compare salary management across districts" β†’ "salary management"
811
+ - "How much was budget allocation for Local Government in 2023?" β†’ "budget allocation"
812
+
813
+ OUTPUT FORMAT:
814
+ Provide your response in this exact format:
815
+
816
+ EXPLANATION: [Your reasoning here]
817
+ QUERY: [One clean sentence for retrieval]
818
+
819
+ The QUERY line will be extracted and used directly for RAG retrieval."""),
820
+ HumanMessage(content=f"""Conversation:
821
+ {convo_text}
822
+
823
+ Rewrite the best retrieval query:""")
824
+ ])
825
+
826
+ try:
827
+ logger.info(f"πŸ”„ QUERY REWRITING: Calling LLM for query rewrite")
828
+ response = self.llm.invoke(rewrite_prompt.format_messages())
829
+ logger.info(f"πŸ”„ QUERY REWRITING: LLM response received: {response.content[:100]}...")
830
+
831
+ rewritten = response.content.strip()
832
+
833
+ # Extract only the QUERY line from the structured response
834
+ lines = rewritten.split('\n')
835
+ query_line = None
836
+ for line in lines:
837
+ if line.strip().startswith('QUERY:'):
838
+ query_line = line.replace('QUERY:', '').strip()
839
+ break
840
+
841
+ if query_line and len(query_line) > 5:
842
+ logger.info(f"πŸ”„ QUERY REWRITING: Query rewritten successfully: '{query_line[:50]}...'")
843
+ return query_line
844
+ else:
845
+ logger.info(f"πŸ”„ QUERY REWRITING: No QUERY line found or too short, using fallback")
846
+ # Fallback to last user message
847
+ for msg in reversed(messages):
848
+ if isinstance(msg, HumanMessage):
849
+ logger.info(f"πŸ”„ QUERY REWRITING: Using fallback message: '{msg.content[:50]}...'")
850
+ return msg.content
851
+ logger.info(f"πŸ”„ QUERY REWRITING: Using default fallback")
852
+ return "audit report information"
853
+
854
+ except Exception as e:
855
+ logger.error(f"❌ QUERY REWRITING: Error during rewrite: {e}")
856
+ # Fallback
857
+ for msg in reversed(messages):
858
+ if isinstance(msg, HumanMessage):
859
+ logger.info(f"πŸ”„ QUERY REWRITING: Using error fallback message: '{msg.content[:50]}...'")
860
+ return msg.content
861
+ logger.info(f"πŸ”„ QUERY REWRITING: Using default error fallback")
862
+ return "audit report information"
863
+
864
+ def _build_filters(self, context: QueryContext) -> Dict[str, Any]:
865
+ """Build filters for RAG retrieval"""
866
+ logger.info("πŸ”§ FILTER BUILDING: Starting filter construction")
867
+ filters = {}
868
+
869
+ # Check for filename filtering first (mutually exclusive)
870
+ if context.ui_filters and context.ui_filters.get("filenames"):
871
+ logger.info(f"πŸ”§ FILTER BUILDING: Filename filtering requested (mutually exclusive mode)")
872
+ filters["filenames"] = context.ui_filters["filenames"]
873
+ logger.info(f"πŸ”§ FILTER BUILDING: Added filenames filter: {context.ui_filters['filenames']}")
874
+ logger.info(f"πŸ”§ FILTER BUILDING: Final filters: {filters}")
875
+ return filters # Return early, skip all other filters
876
+
877
+ # UI filters take priority, but merge with extracted context if UI filters are incomplete
878
+ if context.ui_filters:
879
+ logger.info(f"πŸ”§ FILTER BUILDING: UI filters present: {context.ui_filters}")
880
+
881
+ # Add UI filters first
882
+ if context.ui_filters.get("sources"):
883
+ filters["sources"] = context.ui_filters["sources"]
884
+ logger.info(f"πŸ”§ FILTER BUILDING: Added sources filter from UI: {context.ui_filters['sources']}")
885
+
886
+ if context.ui_filters.get("years"):
887
+ filters["year"] = context.ui_filters["years"]
888
+ logger.info(f"πŸ”§ FILTER BUILDING: Added years filter from UI: {context.ui_filters['years']}")
889
+
890
+ if context.ui_filters.get("districts"):
891
+ # Normalize district names to title case (match Qdrant metadata format)
892
+ normalized_districts = [d.title() for d in context.ui_filters['districts']]
893
+ filters["district"] = normalized_districts
894
+ logger.info(f"πŸ”§ FILTER BUILDING: Added districts filter from UI: {context.ui_filters['districts']} β†’ normalized: {normalized_districts}")
895
+
896
+ # Merge with extracted context for missing filters
897
+ if not filters.get("year") and context.extracted_year:
898
+ # Handle both single values and arrays
899
+ if isinstance(context.extracted_year, list):
900
+ filters["year"] = context.extracted_year
901
+ else:
902
+ filters["year"] = [context.extracted_year]
903
+ logger.info(f"πŸ”§ FILTER BUILDING: Added extracted year filter (UI missing): {context.extracted_year}")
904
+
905
+ if not filters.get("district") and context.extracted_district:
906
+ # Handle both single values and arrays
907
+ if isinstance(context.extracted_district, list):
908
+ # Normalize district names to title case (match Qdrant metadata format)
909
+ normalized = [d.title() for d in context.extracted_district]
910
+ filters["district"] = normalized
911
+ else:
912
+ filters["district"] = [context.extracted_district.title()]
913
+ logger.info(f"πŸ”§ FILTER BUILDING: Added extracted district filter (UI missing): {context.extracted_district}")
914
+
915
+ if not filters.get("sources") and context.extracted_source:
916
+ # Handle both single values and arrays
917
+ if isinstance(context.extracted_source, list):
918
+ filters["sources"] = context.extracted_source
919
+ else:
920
+ filters["sources"] = [context.extracted_source]
921
+ logger.info(f"πŸ”§ FILTER BUILDING: Added extracted source filter (UI missing): {context.extracted_source}")
922
+ else:
923
+ logger.info(f"πŸ”§ FILTER BUILDING: No UI filters, using extracted context")
924
+ # Use extracted context
925
+ if context.extracted_source:
926
+ # Handle both single values and arrays
927
+ if isinstance(context.extracted_source, list):
928
+ filters["sources"] = context.extracted_source
929
+ else:
930
+ filters["sources"] = [context.extracted_source]
931
+ logger.info(f"πŸ”§ FILTER BUILDING: Added extracted source filter: {context.extracted_source}")
932
+
933
+ if context.extracted_year:
934
+ # Handle both single values and arrays
935
+ if isinstance(context.extracted_year, list):
936
+ filters["year"] = context.extracted_year
937
+ else:
938
+ filters["year"] = [context.extracted_year]
939
+ logger.info(f"πŸ”§ FILTER BUILDING: Added extracted year filter: {context.extracted_year}")
940
+
941
+ if context.extracted_district:
942
+ # Handle both single values and arrays
943
+ if isinstance(context.extracted_district, list):
944
+ filters["district"] = context.extracted_district
945
+ else:
946
+ filters["district"] = [context.extracted_district]
947
+ logger.info(f"πŸ”§ FILTER BUILDING: Added extracted district filter: {context.extracted_district}")
948
+
949
+ logger.info(f"πŸ”§ FILTER BUILDING: Final filters: {filters}")
950
+ return filters
951
+
952
+ def _generate_conversational_response(self, query: str, documents: List[Any], rag_answer: str, messages: List[Any]) -> str:
953
+ """Generate conversational response from RAG results"""
954
+ logger.info("πŸ’¬ RESPONSE GENERATION: Starting conversational response generation")
955
+ logger.info(f"πŸ’¬ RESPONSE GENERATION: Processing {len(documents)} documents")
956
+ logger.info(f"πŸ’¬ RESPONSE GENERATION: Query: '{query[:50]}...'")
957
+
958
+ # Create response prompt
959
+ logger.info(f"πŸ’¬ RESPONSE GENERATION: Building response prompt")
960
+ response_prompt = ChatPromptTemplate.from_messages([
961
+ SystemMessage(content="""You are a helpful audit report assistant. Generate a natural, conversational response.
962
+
963
+ RULES:
964
+ 1. Answer the user's question directly and clearly
965
+ 2. Use the retrieved documents as evidence
966
+ 3. Be conversational, not technical
967
+ 4. Don't mention scores, retrieval details, or technical implementation
968
+ 5. If relevant documents were found, reference them naturally
969
+ 6. If no relevant documents, explain based on your knowledge (if you have it) or just say you do not have enough information.
970
+ 7. If the passages have useful facts or numbers, use them in your answer.
971
+ 8. When you use information from a passage, mention where it came from by using [Doc i] at the end of the sentence. i stands for the number of the document.
972
+ 9. Do not use the sentence 'Doc i says ...' to say where information came from.
973
+ 10. If the same thing is said in more than one document, you can mention all of them like this: [Doc i, Doc j, Doc k]
974
+ 11. Do not just summarize each passage one by one. Group your summaries to highlight the key parts in the explanation.
975
+ 12. If it makes sense, use bullet points and lists to make your answers easier to understand.
976
+ 13. You do not need to use every passage. Only use the ones that help answer the question.
977
+ 14. If the documents do not have the information needed to answer the question, just say you do not have enough information.
978
+
979
+
980
+ TONE: Professional but friendly, like talking to a colleague."""),
981
+ HumanMessage(content=f"""User Question: {query}
982
+
983
+ Retrieved Documents: {len(documents)} documents found
984
+
985
+ RAG Answer: {rag_answer}
986
+
987
+ Generate a conversational response:""")
988
+ ])
989
+
990
+ try:
991
+ logger.info(f"πŸ’¬ RESPONSE GENERATION: Calling LLM for final response")
992
+ response = self.llm.invoke(response_prompt.format_messages())
993
+ logger.info(f"πŸ’¬ RESPONSE GENERATION: LLM response received: {response.content[:100]}...")
994
+ return response.content.strip()
995
+ except Exception as e:
996
+ logger.error(f"❌ RESPONSE GENERATION: Error during generation: {e}")
997
+ logger.info(f"πŸ’¬ RESPONSE GENERATION: Using RAG answer as fallback")
998
+ return rag_answer # Fallback to RAG answer
999
+
1000
+ def _generate_conversational_response_without_docs(self, query: str, messages: List[Any]) -> str:
1001
+ """Generate conversational response using only LLM knowledge and conversation history"""
1002
+ logger.info("πŸ’¬ RESPONSE GENERATION (NO DOCS): Starting response generation without documents")
1003
+ logger.info(f"πŸ’¬ RESPONSE GENERATION (NO DOCS): Query: '{query[:50]}...'")
1004
+
1005
+ # Build conversation context
1006
+ conversation_context = ""
1007
+ for i, msg in enumerate(messages[-6:]): # Last 6 messages for context
1008
+ if isinstance(msg, HumanMessage):
1009
+ conversation_context += f"User: {msg.content}\n"
1010
+ elif isinstance(msg, AIMessage):
1011
+ conversation_context += f"Assistant: {msg.content}\n"
1012
+
1013
+ # Create response prompt
1014
+ logger.info(f"πŸ’¬ RESPONSE GENERATION (NO DOCS): Building response prompt")
1015
+ response_prompt = ChatPromptTemplate.from_messages([
1016
+ SystemMessage(content="""You are a helpful audit report assistant. Generate a natural, conversational response.
1017
+
1018
+ RULES:
1019
+ 1. Answer the user's question directly and clearly based on your knowledge
1020
+ 2. Use conversation history for context
1021
+ 3. Be conversational, not technical
1022
+ 4. Acknowledge if the answer is based on general knowledge rather than specific documents
1023
+ 5. Stay professional but friendly
1024
+
1025
+ TONE: Professional but friendly, like talking to a colleague."""),
1026
+ HumanMessage(content=f"""Current Question: {query}
1027
+
1028
+ Conversation History:
1029
+ {conversation_context}
1030
+
1031
+ Generate a conversational response based on your knowledge:""")
1032
+ ])
1033
+
1034
+ try:
1035
+ logger.info(f"πŸ’¬ RESPONSE GENERATION (NO DOCS): Calling LLM")
1036
+ response = self.llm.invoke(response_prompt.format_messages())
1037
+ logger.info(f"πŸ’¬ RESPONSE GENERATION (NO DOCS): LLM response received: {response.content[:100]}...")
1038
+ return response.content.strip()
1039
+ except Exception as e:
1040
+ logger.error(f"❌ RESPONSE GENERATION (NO DOCS): Error during generation: {e}")
1041
+ return "I apologize, but I encountered an error. Please try asking your question differently."
1042
+
1043
+ def chat(self, user_input: str, conversation_id: str = "default") -> Dict[str, Any]:
1044
+ """Main chat interface"""
1045
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Processing '{user_input[:50]}...'")
1046
+
1047
+ # Load conversation
1048
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Loading conversation {conversation_id}")
1049
+ conversation_file = self.conversations_dir / f"{conversation_id}.json"
1050
+ conversation = self._load_conversation(conversation_file)
1051
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Loaded {len(conversation['messages'])} previous messages")
1052
+
1053
+ # Add user message
1054
+ conversation["messages"].append(HumanMessage(content=user_input))
1055
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Added user message to conversation")
1056
+
1057
+ # Prepare state
1058
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Preparing state for graph execution")
1059
+ state = MultiAgentState(
1060
+ conversation_id=conversation_id,
1061
+ messages=conversation["messages"],
1062
+ current_query=user_input,
1063
+ query_context=None,
1064
+ rag_query=None,
1065
+ rag_filters=None,
1066
+ retrieved_documents=None,
1067
+ final_response=None,
1068
+ agent_logs=[],
1069
+ conversation_context=conversation.get("context", {}),
1070
+ session_start_time=conversation["session_start_time"],
1071
+ last_ai_message_time=conversation["last_ai_message_time"]
1072
+ )
1073
+
1074
+ # Run multi-agent graph
1075
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Executing multi-agent graph")
1076
+ final_state = self.graph.invoke(state)
1077
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Graph execution completed")
1078
+
1079
+ # Add AI response to conversation
1080
+ if final_state["final_response"]:
1081
+ conversation["messages"].append(AIMessage(content=final_state["final_response"]))
1082
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Added AI response to conversation")
1083
+
1084
+ # Update conversation
1085
+ conversation["last_ai_message_time"] = final_state["last_ai_message_time"]
1086
+ conversation["context"] = final_state["conversation_context"]
1087
+
1088
+ # Save conversation
1089
+ logger.info(f"πŸ’¬ MULTI-AGENT CHAT: Saving conversation")
1090
+ self._save_conversation(conversation_file, conversation)
1091
+
1092
+ logger.info("βœ… MULTI-AGENT CHAT: Completed")
1093
+
1094
+ # Return response and RAG results
1095
+ return {
1096
+ 'response': final_state["final_response"],
1097
+ 'rag_result': {
1098
+ 'sources': final_state["retrieved_documents"] or [],
1099
+ 'answer': final_state["final_response"]
1100
+ },
1101
+ 'agent_logs': final_state["agent_logs"],
1102
+ 'actual_rag_query': final_state.get("rag_query", "")
1103
+ }
1104
+
1105
+ def _load_conversation(self, conversation_file: Path) -> Dict[str, Any]:
1106
+ """Load conversation from file"""
1107
+ if conversation_file.exists():
1108
+ try:
1109
+ with open(conversation_file) as f:
1110
+ data = json.load(f)
1111
+ # Convert message dicts back to LangChain messages
1112
+ messages = []
1113
+ for msg_data in data.get("messages", []):
1114
+ if msg_data["type"] == "human":
1115
+ messages.append(HumanMessage(content=msg_data["content"]))
1116
+ elif msg_data["type"] == "ai":
1117
+ messages.append(AIMessage(content=msg_data["content"]))
1118
+ data["messages"] = messages
1119
+ return data
1120
+ except Exception as e:
1121
+ logger.warning(f"Could not load conversation: {e}")
1122
+
1123
+ # Return default conversation
1124
+ return {
1125
+ "messages": [],
1126
+ "session_start_time": time.time(),
1127
+ "last_ai_message_time": time.time(),
1128
+ "context": {}
1129
+ }
1130
+
1131
+ def _save_conversation(self, conversation_file: Path, conversation: Dict[str, Any]):
1132
+ """Save conversation to file"""
1133
+ try:
1134
+ # Convert messages to serializable format
1135
+ messages_data = []
1136
+ for msg in conversation["messages"]:
1137
+ if isinstance(msg, HumanMessage):
1138
+ messages_data.append({"type": "human", "content": msg.content})
1139
+ elif isinstance(msg, AIMessage):
1140
+ messages_data.append({"type": "ai", "content": msg.content})
1141
+
1142
+ conversation_data = {
1143
+ "messages": messages_data,
1144
+ "session_start_time": conversation["session_start_time"],
1145
+ "last_ai_message_time": conversation["last_ai_message_time"],
1146
+ "context": conversation.get("context", {})
1147
+ }
1148
+
1149
+ with open(conversation_file, 'w') as f:
1150
+ json.dump(conversation_data, f, indent=2)
1151
+
1152
+ except Exception as e:
1153
+ logger.error(f"Could not save conversation: {e}")
1154
+
1155
+
1156
+ def get_multi_agent_chatbot():
1157
+ """Get multi-agent chatbot instance"""
1158
+ return MultiAgentRAGChatbot()
1159
+
1160
+ if __name__ == "__main__":
1161
+ # Test the multi-agent system
1162
+ chatbot = MultiAgentRAGChatbot()
1163
+
1164
+ # Test conversation
1165
+ result = chatbot.chat("List me top 10 challenges in budget allocation for the last 3 years")
1166
+ print("Response:", result['response'])
1167
+ print("Agent Logs:", result['agent_logs'])