File size: 5,816 Bytes
c46b695
e2ba292
 
 
 
c46b695
e2ba292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46b695
 
e2ba292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c46b695
e2ba292
 
 
 
 
 
 
c46b695
 
 
 
 
e2ba292
 
 
 
 
 
21d1d21
c46b695
 
 
 
 
e2ba292
 
c46b695
 
 
e2ba292
 
c46b695
 
e2ba292
c46b695
 
 
 
 
 
 
 
e2ba292
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
import torch
import os
from transformers import AutoTokenizer
from models import AffinityPredictor

# Global variables for model and tokenizers
model = None
molecule_tokenizer = None
protein_tokenizer = None
device = None

def load_model():
    """Load the trained model and tokenizers"""
    global model, molecule_tokenizer, protein_tokenizer, device
    
    # Set device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {device}")
    
    # Load tokenizers
    molecule_tokenizer = AutoTokenizer.from_pretrained("DeepChem/ChemBERTa-77M-MLM")
    protein_tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D")
    
    # Initialize model with same configuration as training
    model = AffinityPredictor(
        protein_model_name="facebook/esm2_t6_8M_UR50D",
        molecule_model_name="DeepChem/ChemBERTa-77M-MLM",
        hidden_sizes=[1024, 768, 512, 256, 1],
        inception_out_channels=256,
        dropout=0.05
    )
    
    # Load the trained weights
    model_path = "Davis-Final.pth"
    if os.path.exists(model_path):
        checkpoint = torch.load(model_path, map_location=device)
        # Handle different checkpoint formats
        if 'model_state_dict' in checkpoint:
            model.load_state_dict(checkpoint['model_state_dict'])
        elif 'state_dict' in checkpoint:
            model.load_state_dict(checkpoint['state_dict'])
        else:
            model.load_state_dict(checkpoint)
        print("Model loaded successfully!")
    else:
        print(f"Warning: Model file {model_path} not found. Using randomly initialized weights.")
    
    model.to(device)
    model.eval()
    
    return True

def predict_affinity(smiles, sequence):
    """Predict drug-target affinity using the trained model"""
    global model, molecule_tokenizer, protein_tokenizer, device
    
    # Load model if not already loaded
    if model is None:
        try:
            load_model()
        except Exception as e:
            return f"Error loading model: {str(e)}"
    
    # Validate inputs
    if not smiles or not smiles.strip():
        return "Error: Please enter a valid SMILES string"
    
    if not sequence or not sequence.strip():
        return "Error: Please enter a valid protein sequence"
    
    try:
        model.eval()
        
        # Tokenize inputs
        molecule_encoding = molecule_tokenizer(
            [smiles.strip()],
            padding="max_length",
            truncation=True,
            max_length=128,
            return_tensors="pt"
        )
        
        protein_encoding = protein_tokenizer(
            [sequence.strip()],
            padding="max_length",
            truncation=True,
            max_length=1024,
            return_tensors="pt"
        )
        
        # Create batch dictionary
        batch = {
            "molecule_input_ids": molecule_encoding.input_ids.to(device),
            "molecule_attention_mask": molecule_encoding.attention_mask.to(device),
            "protein_input_ids": protein_encoding.input_ids.to(device),
            "protein_attention_mask": protein_encoding.attention_mask.to(device)
        }
        
        # Make prediction
        with torch.no_grad():
            prediction = model(batch)
            affinity_score = prediction.cpu().item()
        
        return f"Predicted Affinity Score: {affinity_score:.4f}"
        
    except Exception as e:
        return f"Error during prediction: {str(e)}"

# Load model on startup
print("Loading model...")
try:
    load_model()
    print("Model loaded successfully!")
except Exception as e:
    print(f"Warning: Could not load model on startup: {e}")

with gr.Blocks(title="Molecule-Protein Affinity Predictor") as demo:
    gr.Markdown("## Molecule–Protein Affinity Prediction")
    gr.Markdown(
        "Enter a **Molecule SMILES string** and a **Protein amino acid sequence** "
        "then click **Predict** to get the affinity score using the StructureFree-DTA model."
    )
    
    gr.Markdown(
        "### Example inputs:\n"
        "**SMILES:** `CC1=C2C=C(C=CC2=NN1)C3=CC(=CN=C3)OCC(CC4=CC=CC=C4)N`\n"
        "\n**Protein:** `MKKFFDSRREQGGSGLGSGSSGGGGSTSGLGSGYIGRVFGIGRQQVTVDEVLAEGGFAIVFLVRTSNGMKCALKRMFVNNEHDLQVCKREIQIMRDLSGHKNIVGYIDSSINNVSSGDVWEVLILMDFCRGGQVVNLMNQRLQTGFTENEVLQIFCDTCEAVARLHQCKTPIIHRDLKVENILLHDRGHYVLCDFGSATNKFQNPQTEGVNAVEDEIKKYTTLSYRAPEMVNLYSGKIITTKADIWALGCLLYKLCYFTLPFGESQVAICDGNFTIPDNSRYSQDMHCLIRYMLEPDPDKRPDIYQVSYFSFKLLKKECPIPNVQNSPIPAKLPEPVKASEAAAKKTQPKARLTDPIPTTETSIAPRQRPKAGQTQPNPGILPIQPALTPRKRATVQPPPQAAGSSNQPGLLASVPQPKPQAPPSQPLPQTQAKQPQAPPTPQQTPSTQAQGLPAQAQATPQHQQQLFLKQQQQQQQPPPAQQQPAGTFYQQQQAQTQQFQAVHPATQKPAIAQFPVVSQGGSQQQLMQNFYQQQQQQQQQQQQQQLATALHQQQLMTQQAALQQKPTMAAGQQPQPQPAAAPQPAPAQEPAIQAPVRQQPKVQTTPPPAVQGQKVGSLTPPSSPKTQRAGHRRILSDVTHSAVFGVPASKSTQLLQAAAAEASLNKSKSATTTPSGSPRTSQQNVYNPSEGSTWNPFDDDNFSKLTAEELLNKDFAKLGEGKHPEKLGGSAESLIPGFQSTQGDAFATTSFSAGTAEKRKGGQTVDSGLPLLSVSDPFIPLQVPDAPEKLIEGLKSPDTSLLLPDLLPMTDPFGSTSDAVIEKADVAVESLIPGLEPPVPQRLPSQTESVTSNRTDSLTGEDSLLDCSLLSNPTTDLLEEFAPTAISAPVHKAAEDSNLISGFDVPEGSDKVAEDEFDPIPVLITKNPQGGHSRNSSGSSESSLPNLARSLLLVDQLIDL`"
    )

    with gr.Row():
        smiles_input = gr.Textbox(
            label="Molecule SMILES",
            placeholder="e.g. CC(=O)OC1=CC=CC=C1C(=O)O",
            lines=2
        )
        sequence_input = gr.Textbox(
            label="Protein Sequence",
            placeholder="e.g. MVLSPADKTNVKAA...",
            lines=5
        )

    predict_button = gr.Button("Predict", variant="primary")
    output = gr.Textbox(label="Affinity Score", interactive=False)

    predict_button.click(
        fn=predict_affinity,
        inputs=[smiles_input, sequence_input],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()