Spaces:
Sleeping
Sleeping
Commit
·
6c9d07b
1
Parent(s):
78aafcc
deepnote update
Browse files
app.py
CHANGED
|
@@ -4,6 +4,7 @@ import faq as faq
|
|
| 4 |
import util as util
|
| 5 |
import uvicorn
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
|
@@ -15,6 +16,15 @@ class AskRequest(BaseModel):
|
|
| 15 |
k: int
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
@app.post("/api/v1/ask")
|
| 19 |
async def ask_api(request: AskRequest):
|
| 20 |
return ask(
|
|
@@ -23,12 +33,14 @@ async def ask_api(request: AskRequest):
|
|
| 23 |
|
| 24 |
|
| 25 |
@app.post("/api/v2/ask")
|
| 26 |
-
async def ask_api(request:
|
| 27 |
util.SPLIT_PAGE_BREAKS = True
|
|
|
|
|
|
|
| 28 |
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
|
| 29 |
documents = faq.similarity_search(vectordb, request.question, k=request.k)
|
| 30 |
df_doc = util.transform_documents_to_dataframe(documents)
|
| 31 |
-
df_filter = util.remove_duplicates_by_column(df_doc,
|
| 32 |
return util.dataframe_to_dict(df_filter)
|
| 33 |
|
| 34 |
|
|
|
|
| 4 |
import util as util
|
| 5 |
import uvicorn
|
| 6 |
import gradio as gr
|
| 7 |
+
from typing import List, Optional
|
| 8 |
|
| 9 |
app = FastAPI()
|
| 10 |
|
|
|
|
| 16 |
k: int
|
| 17 |
|
| 18 |
|
| 19 |
+
class AskRequestEx(BaseModel):
|
| 20 |
+
question: str
|
| 21 |
+
sheet_url: str
|
| 22 |
+
page_content_column: str
|
| 23 |
+
k: int
|
| 24 |
+
id_column: str
|
| 25 |
+
synonyms: Optional[List[List[str]]] = None
|
| 26 |
+
|
| 27 |
+
|
| 28 |
@app.post("/api/v1/ask")
|
| 29 |
async def ask_api(request: AskRequest):
|
| 30 |
return ask(
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
@app.post("/api/v2/ask")
|
| 36 |
+
async def ask_api(request: AskRequestEx):
|
| 37 |
util.SPLIT_PAGE_BREAKS = True
|
| 38 |
+
if request.synonyms is not None:
|
| 39 |
+
util.SYNONYMS = request.synonyms
|
| 40 |
vectordb = faq.load_vectordb(request.sheet_url, request.page_content_column)
|
| 41 |
documents = faq.similarity_search(vectordb, request.question, k=request.k)
|
| 42 |
df_doc = util.transform_documents_to_dataframe(documents)
|
| 43 |
+
df_filter = util.remove_duplicates_by_column(df_doc, request.id_column)
|
| 44 |
return util.dataframe_to_dict(df_filter)
|
| 45 |
|
| 46 |
|
faq.py
CHANGED
|
@@ -103,7 +103,7 @@ def create_vectordb_id(
|
|
| 103 |
if embedding_function is None:
|
| 104 |
embedding_function = define_embedding_function(EMBEDDING_MODEL)
|
| 105 |
|
| 106 |
-
df = util.read_df(util.xlsx_url(faq_id))
|
| 107 |
documents = create_documents(df, page_content_column)
|
| 108 |
vectordb = get_vectordb(
|
| 109 |
faq_id=faq_id, embedding_function=embedding_function, documents=documents
|
|
|
|
| 103 |
if embedding_function is None:
|
| 104 |
embedding_function = define_embedding_function(EMBEDDING_MODEL)
|
| 105 |
|
| 106 |
+
df = util.read_df(util.xlsx_url(faq_id), page_content_column)
|
| 107 |
documents = create_documents(df, page_content_column)
|
| 108 |
vectordb = get_vectordb(
|
| 109 |
faq_id=faq_id, embedding_function=embedding_function, documents=documents
|
util.py
CHANGED
|
@@ -4,6 +4,7 @@ SHEET_URL_X = "https://docs.google.com/spreadsheets/d/"
|
|
| 4 |
SHEET_URL_Y = "/edit#gid="
|
| 5 |
SHEET_URL_Y_EXPORT = "/export?gid="
|
| 6 |
SPLIT_PAGE_BREAKS = False
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def get_id(sheet_url: str) -> str:
|
|
@@ -17,10 +18,12 @@ def xlsx_url(get_id: str) -> str:
|
|
| 17 |
return SHEET_URL_X + get_id[0:y] + SHEET_URL_Y_EXPORT + get_id[y + 1 :]
|
| 18 |
|
| 19 |
|
| 20 |
-
def read_df(xlsx_url: str,
|
| 21 |
df = pd.read_excel(xlsx_url, header=0, keep_default_na=False)
|
| 22 |
-
if
|
| 23 |
df = split_page_breaks(df, page_content_column)
|
|
|
|
|
|
|
| 24 |
return df
|
| 25 |
|
| 26 |
|
|
@@ -71,3 +74,20 @@ def dataframe_to_dict(df):
|
|
| 71 |
df_records = df.to_dict(orient="records")
|
| 72 |
|
| 73 |
return df_records
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
SHEET_URL_Y = "/edit#gid="
|
| 5 |
SHEET_URL_Y_EXPORT = "/export?gid="
|
| 6 |
SPLIT_PAGE_BREAKS = False
|
| 7 |
+
SYNONYMS = None
|
| 8 |
|
| 9 |
|
| 10 |
def get_id(sheet_url: str) -> str:
|
|
|
|
| 18 |
return SHEET_URL_X + get_id[0:y] + SHEET_URL_Y_EXPORT + get_id[y + 1 :]
|
| 19 |
|
| 20 |
|
| 21 |
+
def read_df(xlsx_url: str, page_content_column: str) -> pd.DataFrame:
|
| 22 |
df = pd.read_excel(xlsx_url, header=0, keep_default_na=False)
|
| 23 |
+
if SPLIT_PAGE_BREAKS:
|
| 24 |
df = split_page_breaks(df, page_content_column)
|
| 25 |
+
if SYNONYMS is not None:
|
| 26 |
+
df = duplicate_rows_with_synonyms(df, page_content_column, SYNONYMS)
|
| 27 |
return df
|
| 28 |
|
| 29 |
|
|
|
|
| 74 |
df_records = df.to_dict(orient="records")
|
| 75 |
|
| 76 |
return df_records
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def duplicate_rows_with_synonyms(df, column, synonyms):
|
| 80 |
+
new_rows = []
|
| 81 |
+
for index, row in df.iterrows():
|
| 82 |
+
new_rows.append(row)
|
| 83 |
+
for synonym_list in synonyms:
|
| 84 |
+
for word in row[column].split():
|
| 85 |
+
if word in synonym_list:
|
| 86 |
+
for synonym in synonym_list:
|
| 87 |
+
if synonym != word:
|
| 88 |
+
new_row = row.copy()
|
| 89 |
+
new_row[column] = row[column].replace(word, synonym)
|
| 90 |
+
new_rows.append(new_row)
|
| 91 |
+
new_df = pd.DataFrame(new_rows, columns=df.columns)
|
| 92 |
+
new_df = new_df.reset_index(drop=True)
|
| 93 |
+
return new_df
|