Spaces:
Build error
Build error
| from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification | |
| def analyze(model_name: str, text: str, top_k=1) -> dict: | |
| ''' | |
| Output result of sentiment analysis of a text through a defined model | |
| ''' | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, top_k=top_k) | |
| return classifier(text) | |
| user_input = "Go fuck yourself" | |
| user_model = "andyqin18/test-finetuned" | |
| # result = analyze(user_model, user_input, top_k=2) | |
| # print(result[0][0]['label']) | |
| import pandas as pd | |
| import numpy as np | |
| df = pd.read_csv("milestone3/comp/test_comment.csv") | |
| test_texts = df["comment_text"].values | |
| sample_texts = np.random.choice(test_texts, size=10, replace=False) | |
| init_table_dict = { | |
| "Text": [], | |
| "Highest Toxicity Class": [], | |
| "Highest Score": [], | |
| "Second Highest Toxicity Class": [], | |
| "Second Highest Score": [] | |
| } | |
| for text in sample_texts: | |
| result = analyze(user_model, text, top_k=2) | |
| init_table_dict["Text"].append(text[:50]) | |
| init_table_dict["Highest Toxicity Class"].append(result[0][0]['label']) | |
| init_table_dict["Highest Score"].append(result[0][0]['score']) | |
| init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label']) | |
| init_table_dict["Second Highest Score"].append(result[0][1]['score']) | |
| print(init_table_dict) |