Spaces:
Build error
Build error
Debug
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import pandas as pd
|
|
| 3 |
import numpy as np
|
| 4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
|
| 6 |
-
|
| 7 |
fine_tuned_model = "andyqin18/test-finetuned"
|
| 8 |
sample_text_num = 10
|
| 9 |
|
|
@@ -34,27 +34,24 @@ model_descrip = {
|
|
| 34 |
Labels: POS; NEU; NEG"
|
| 35 |
}
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
| 41 |
user_model = st.selectbox("Please select a model:", model_descrip)
|
| 42 |
|
|
|
|
| 43 |
# Display model information
|
| 44 |
st.write("### Model Description:")
|
| 45 |
st.write(model_descrip[user_model])
|
| 46 |
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
# Perform analysis and print result
|
| 51 |
if st.button("Analyze"):
|
| 52 |
if not user_input:
|
| 53 |
st.write("Please enter a text.")
|
| 54 |
else:
|
| 55 |
with st.spinner("Hang on.... Analyzing..."):
|
|
|
|
| 56 |
if user_model == fine_tuned_model:
|
| 57 |
-
result = analyze(user_model, user_input, top_k=2)
|
| 58 |
result_dict = {
|
| 59 |
"Text": [user_input],
|
| 60 |
"Highest Toxicity Class": [result[0][0]['label']],
|
|
@@ -63,29 +60,32 @@ if st.button("Analyze"):
|
|
| 63 |
"Second Highest Score": [result[0][1]['score']]
|
| 64 |
}
|
| 65 |
st.dataframe(pd.DataFrame(result_dict))
|
| 66 |
-
if st.button("Click to generate ten sample analysis"):
|
| 67 |
-
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
| 68 |
-
test_texts = df["comment_text"].values
|
| 69 |
-
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
st.dataframe(pd.DataFrame(init_table_dict))
|
| 87 |
else:
|
| 88 |
-
st.write("(
|
| 89 |
|
| 90 |
|
| 91 |
else:
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
|
| 6 |
+
# Define global variables
|
| 7 |
fine_tuned_model = "andyqin18/test-finetuned"
|
| 8 |
sample_text_num = 10
|
| 9 |
|
|
|
|
| 34 |
Labels: POS; NEU; NEG"
|
| 35 |
}
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
user_input = st.text_input("Enter your text:", value="NYU is the better than Columbia.")
|
| 38 |
user_model = st.selectbox("Please select a model:", model_descrip)
|
| 39 |
|
| 40 |
+
|
| 41 |
# Display model information
|
| 42 |
st.write("### Model Description:")
|
| 43 |
st.write(model_descrip[user_model])
|
| 44 |
|
| 45 |
|
|
|
|
|
|
|
| 46 |
# Perform analysis and print result
|
| 47 |
if st.button("Analyze"):
|
| 48 |
if not user_input:
|
| 49 |
st.write("Please enter a text.")
|
| 50 |
else:
|
| 51 |
with st.spinner("Hang on.... Analyzing..."):
|
| 52 |
+
# If fine-tuned
|
| 53 |
if user_model == fine_tuned_model:
|
| 54 |
+
result = analyze(user_model, user_input, top_k=2) # Top 2 labels with highest score
|
| 55 |
result_dict = {
|
| 56 |
"Text": [user_input],
|
| 57 |
"Highest Toxicity Class": [result[0][0]['label']],
|
|
|
|
| 60 |
"Second Highest Score": [result[0][1]['score']]
|
| 61 |
}
|
| 62 |
st.dataframe(pd.DataFrame(result_dict))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
# 10 Sample Table
|
| 65 |
+
if st.button("Click to generate ten sample analysis"):
|
| 66 |
+
with st.spinner("Hang on.... Analyzing..."):
|
| 67 |
+
df = pd.read_csv("milestone3/comp/test_comment.csv")
|
| 68 |
+
test_texts = df["comment_text"].values
|
| 69 |
+
sample_texts = np.random.choice(test_texts, size=sample_text_num, replace=False)
|
| 70 |
+
|
| 71 |
+
init_table_dict = {
|
| 72 |
+
"Text": [],
|
| 73 |
+
"Highest Toxicity Class": [],
|
| 74 |
+
"Highest Score": [],
|
| 75 |
+
"Second Highest Toxicity Class": [],
|
| 76 |
+
"Second Highest Score": []
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
for text in sample_texts:
|
| 80 |
+
result = analyze(fine_tuned_model, text[:50], top_k=2)
|
| 81 |
+
init_table_dict["Text"].append(text[:50])
|
| 82 |
+
init_table_dict["Highest Toxicity Class"].append(result[0][0]['label'])
|
| 83 |
+
init_table_dict["Highest Score"].append(result[0][0]['score'])
|
| 84 |
+
init_table_dict["Second Highest Toxicity Class"].append(result[0][1]['label'])
|
| 85 |
+
init_table_dict["Second Highest Score"].append(result[0][1]['score'])
|
| 86 |
st.dataframe(pd.DataFrame(init_table_dict))
|
| 87 |
else:
|
| 88 |
+
st.write("( ─ ‿ ‿ ─ )")
|
| 89 |
|
| 90 |
|
| 91 |
else:
|