Spaces:
Running
Running
| import gradio as gr | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| from io import BytesIO | |
| from PIL import Image | |
| from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets | |
| from src.similarity import compute_similarity | |
| # Set the backend to 'Agg' for non-GUI environments (optional) | |
| import matplotlib | |
| matplotlib.use('Agg') | |
| def generate_plot(): | |
| # Generate data | |
| x = np.linspace(0, 10, 100) | |
| y = np.sin(x) | |
| # Create figure | |
| fig, ax = plt.subplots() | |
| ax.plot(x, y) | |
| ax.set_title("Sine Wave") | |
| # Save figure to a BytesIO buffer | |
| buf = BytesIO() | |
| fig.savefig(buf, format="png", bbox_inches="tight", facecolor="white", dpi=100) | |
| plt.close(fig) # Close the figure to free memory | |
| # Convert buffer to PIL Image | |
| buf.seek(0) | |
| img = Image.open(buf).convert("RGB") | |
| return img | |
| def validate_inputs(selected_model_a, selected_model_b, selected_dataset): | |
| if not selected_model_a: | |
| raise gr.Error("Please select Model A!") | |
| if not selected_model_b: | |
| raise gr.Error("Please select Model B!") | |
| if not selected_dataset: | |
| raise gr.Error("Please select a dataset!") | |
| def display_similarity(model_a, model_b, dataset): | |
| # Assuming compute_similarity returns a float or a string | |
| similarity_score = compute_similarity(model_a, model_b, dataset) | |
| return f"The similarity between {model_a} and {model_b} on {dataset} is: {similarity_score}" | |
| with gr.Blocks(title="LLM Similarity Analyzer") as demo: | |
| gr.Markdown("## Model Similarity Comparison Tool") | |
| dataset_dropdown = gr.Dropdown( | |
| choices=get_leaderboard_datasets(), | |
| label="Select Dataset", | |
| filterable=True, | |
| interactive=True, | |
| info="Leaderboard benchmark datasets" | |
| ) | |
| model_a_dropdown = gr.Dropdown( | |
| choices=get_leaderboard_models_cached(), | |
| label="Select Model A", | |
| filterable=True, | |
| allow_custom_value=False, | |
| info="Search and select models" | |
| ) | |
| model_b_dropdown = gr.Dropdown( | |
| choices=get_leaderboard_models_cached(), | |
| label="Select Model B", | |
| filterable=True, | |
| allow_custom_value=False, | |
| info="Search and select models" | |
| ) | |
| generate_btn = gr.Button("Compute Similarity", variant="primary") | |
| # Textbox to display the similarity result | |
| similarity_output = gr.Textbox( | |
| label="Similarity Result", | |
| interactive=False | |
| ) | |
| generate_btn.click( | |
| fn=validate_inputs, | |
| inputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown], | |
| queue=False | |
| ).then( | |
| fn=display_similarity, | |
| inputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown], | |
| outputs=similarity_output | |
| ) | |
| clear_btn = gr.Button("Clear Selection") | |
| clear_btn.click( | |
| lambda: [None, None, None, ""], | |
| outputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown, similarity_output] | |
| ) | |
| gr.Markdown("## Matplotlib Plot in Gradio") | |
| plot_button = gr.Button("Generate Plot") | |
| plot_output = gr.Image(label="Sine Wave Plot") | |
| plot_button.click(fn=generate_plot, outputs=plot_output) | |
| if __name__ == "__main__": | |
| demo.launch() | |